City University of Hong Kong Course Syllabus

offered by Department of Chemistry with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Natural Product Chemistry and Biosynthesis
Course Code:	CHEM8012
Course Duration:	1 semester
Credit Units:	3 credits
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses : (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to give students a comprehensive overview of (i) different classes of naturally occurring organic molecules (termed as natural products) produced by microorganisms and plants, (ii) organic reactions utilized in the natural product biosynthesis, and (iii) genes and enzymes involved therein. Students will also learn how to use bioinformatic tools to link biosynthetic genes to natural products and vice versa. Altogether, students will be able to classify and describe natural products and to provide plausible biosynthetic schemes for given compounds as well as genes/enzymes required for their biosynthesis. This course will also help students to understand chemical reactions occurring in other biological systems (e.g., in human) or to design biosynthetic pathways to afford compounds of interest.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs#	Weighting* (if applicable)	learnin	lum rel g outco tick	ated omes
1.	Classify natural products into several major groups (i.e., polyketides, terpenoids, alkaloids, peptides, phenylpropanoids, etc.) and indicate the biosynthetic units in the chemical structures.		\$		
2.	Understand and describe the concepts and basic principles of the organic reactions utilized in the biosynthetic processes (e.g., aldol reaction, Claisen reaction, Wagner-Meerwein rearrangement, Mannich reaction, etc.).		~	~	
3.	Describe the reaction schemes to construct the core structures of natural products.		1	1	1
4.	Explain the reactions by the core synth(et)ases (i.e., polyketide synthases, terpene synthases, and nonribosomal peptide synthetases) and by tailoring enzymes (e.g., oxidoreductases, isomerases, and transferases).		1	1	
5.	Utilize bioinformatic tools (e.g., BLAST, antiSMASH, 2ndFind, etc.) to link biosynthetic genes to natural products and vice versa.		1	1	
6.	Provide and elaborate plausible biosynthetic pathways of given natural products whose biosynthesis have yet to be elucidated.			1	1
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

TLA	Brief Description	CIL	O No.					Hours/week (if
			2	3	4	5	6	applicable)
Lectures and	Students will be given a general	1						
exercises	introduction to natural product							
	chemistry, classification of							
	natural products, and biosynthetic							
	units of natural products.							
Lectures and	Students will learn several		1					
exercises	important organic reactions used							
	in the natural product							
	biosynthesis.							
Lectures and	Students will learn the reaction			1				
exercises	mechanisms to provide the core							
	structures of natural products.							
Lectures and	Students will learn several				1			
exercises	important enzymes involved in							
	natural product biosynthesis and							
	how they facilitate a variety of							
	biosynthetic reactions.							
Lectures and	Students will learn how to utilize					1		
exercises	bioinformatic tools to link							
	biosynthetic genes to natural							
	products and vice versa.							
Presentation	Students will pick up or be given						1	
	a natural product and provide a							
	group or individual presentation							
	on the compound.							

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.						Weighting*	Remarks
	1	2	3	4	5	6		
Continuous Assessment: 30%								
Assignments	1	1	1	1	1		15%	
Presentation						1	15%	
Examination: 70% (duration: 3 he	ours)						•	•
Examination	1	1	1	1	1	1	70%	
	•	•		•	•		100%	

Starting from Semester A, 2015-16, students must satisfy the following minimum passing requirement for CHEM courses:

"A minimum of 40% in both coursework and examination components."

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Assignment	Ability to explain organic reactions in the natural product biosynthesis as well as the enzymes involved therein.	High	Significant	Basic	Not even reaching marginal levels
2. Presentation	Ability to summarize and present properties, biosynthesis, and potential application of a given natural product.	High	Significant	Basic	Not even reaching marginal levels
3. Examination	Ability to solve problems related to natural product chemistry/biosynthesis, to propose plausible biosynthetic routes to given natural products, and to discuss the possibility of biosynthetic engineering of given compounds.	High	Significant	Basic	Not even reaching marginal levels

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignment	Ability to explain organic reactions in the natural product biosynthesis as well as the enzymes involved therein.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Presentation	Ability to summarize and present properties, biosynthesis, and potential application of a given natural product.	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Examination	Ability to solve problems related to natural product chemistry/biosynthesis, to propose plausible biosynthetic routes to given natural products, and to discuss the possibility of biosynthetic engineering of given compounds.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information

1. Keyword Syllabus

Natural products

Fatty acids and polyketides, terpenoids and steroids, meroterpenoids, aromatic amino acids and phenylpropanoids, alkaloids, nonribosomally and ribosomally synthesized peptides, carbohydrates

Natural product biosynthesis

Acetate pathway, mevalonate and methylerythritol phosphate (MEP) pathways, shikimate pathway, peptide biosynthesis

Biosynthetic enzymes

Polyketide synthases (PKSs), terpene synthases/cyclases, nonribosomal peptide synthetases (NRPSs), oxidoreductases, transferases, isomerases, hydrolases, lyase, ligases

2. Reading List

2.1 Compulsory Readings

1.	
2.	
3.	

2.2 Additional Readings

1.	Medicinal Natural Products: A Biosynthetic Approach; Paul M. Dewick (John Wiley & Sons, Ltd, 3 rd Edition). The electronic version of the textbook is available from the CityU Library: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470742761
2.	
3.	