City University of Hong Kong Course Syllabus

offered by Department of Architecture and Civil Engineering with effect from Semester A 2022 / 2023

Part I Course Overview

Course Title:	Fire Safety Engineering for Built Environment II
Course Code:	CA8020
Course Duration:	1 Semester (Some courses offered in Summer Term may start a few weeks earlier than the normal University schedule. Please check the teaching schedules with CLs before registering for the courses.)
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	BC8020 Fire Safety Engineering for Built Environment II
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to provide students with an understanding of the critical appraisal in current technology developments and reliability study of various fire engineering systems and to provide the students with the understanding the performance-based building fire codes and the performance-based codes for fire engineering systems.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs #	(if	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)		
			A1	A2	A3
1.	explore and understand the performance-based building fire codes and the performance-based codes for fire engineering systems;				
2.	evaluate and analyze the reliability of various fire engineering systems;				
3.	apply current technologies of fire engineering for the design simple fire services systems.				√
* If	weighting is assigned to CILOs, they should add up to 100%.	100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	TLA Brief Description		No.	Hours /	
		1	2	3	week (if applicable)
Lectures and Class Tests	Explore evaluation and apply performance-based fire engineering and design	✓	√	√	27
Presentation	Assignment presentation		√	√	12

Semester Hours:	3 hours per week
Lecture/Tutorial/Laboratory Mix:	Lecture (2); Tutorial (1); Laboratory (0)

4. Assessment Tasks/Activities

Assessment Tasks / Activities	CILC	No.		Weighting*	Remarks
	1	2	3		
Continuous Assessment: 100%					
Assignments	✓	√	✓	50%	
Class Tests	✓			30%	
Presentation		✓	✓	20%	
Examination: 0%					
* The weightings should add up to 100%.					

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
Assignments	Ability to appreciate CILO 1 to 3	High	Significant	Basic	Not even reach marginal level
Class Tests	Ability to appreciate CILO 1	High	Significant	Basic	Not even reach marginal level
Presentation	Ability to appreciate CILO 2 to 3	High	Significant	Basic	Not even reach marginal level

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
Assignments	Ability to appreciate CILO 1 to 3	High	Significant	Moderate	Basic	Not even reach marginal level
Class Tests	Ability to appreciate CILO 1	High	Significant	Moderate	Basic	Not even reach marginal level
Presentation	Ability to appreciate CILO 2 to 3	High	Significant	Moderate	Basic	Not even reach marginal level

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Critical appraisal in current technology developments. Reliability study. Audio/visual advisory systems. Automatic actuating devices. Fire alarm systems and fire control centre. Fire detection. Performance based building fire codes. Use of computing models and computational fluid dynamic models in assisting the design of fire engineering systems. Performance-based codes for the fire engineering systems.

2. Reading List

2.1 Compulsory Readings

1. Nil

2.2 Additional Readings

- 1. Drysdale, D. (2011) An Introduction to Fire Dynamics, John Wiley & Sons, 3rd Edition.
- 2. Karlsson, B. and Quintiere, J.G., (1999) Enclosure Fire Dynamics, CRC Press, 1st Edition.
- 3. Philip J. DiNenno (Ed.) (2002) The SFPE Handbook of Fire Protection Engineering, Society of Fire Protection Engineers, National Fire Protection Association, 3rd Edition.
- 4. Yeoh, G.H. and Yuen, K.K. (2009) Computational Fluid Dynamics in Fire Engineering Theory, Modeling & Practice, Elsevier.
- 5. Yuen, R.K.K. (1998) Pyrolysis and Combustion of Wood in a Cone Calorimeter. PhD Thesis, University of New South Wales, Australia.
- 6. National Fire Protection Association (2013) National Fire Alarm and Signaling Code.