City University of Hong Kong Course Syllabus

offered by Department of Architecture and Civil Engineering with effect from Semester A 2022 / 2023

Part I Course Overview

Course Title:	Advanced Mechanics		
Course Code:	CA8006M		
Course Duration: 1 Semester (Some courses offered in Summer Term may start a few weeks earlied normal University schedule. Please check the teaching schedules with before registering for the courses.)			
Credit Units:	3		
Level:	R8		
Medium of Instruction:	English		
Medium of Assessment:	English		
Prerequisites: (Course Code and Title)	Nil		
Precursors: (Course Code and Title)	Nil		
Equivalent Courses: (Course Code and Title)	BC8006M Advanced Mechanics		
Exclusive Courses: (Course Code and Title)	Nil		

Part II Course Details

1. Abstract

The course provides fundamental knowledge and classical principles in continuum mechanics including the theory on elasticity and plasticity and expands the horizons on applied mechanics of the attendees.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs #	Weighting* (if applicable)	curricul learning	ry-enrich um relate outcome tick wher iate)	ed es
			A1	A2	A3
1.	discover the fundamental principles of continuum mechanics;	30%	\checkmark	\checkmark	
2.	analyze and apply continuum mechanics using tensor analysis;	30%	\checkmark	\checkmark	
3.	discover the concepts on stress and strain in three-dimension domain; and	20%		\checkmark	\checkmark
4.	discover and apply the advanced topics in elasticity and Lagrangian rigid body dynamics.	20%		\checkmark	\checkmark
* If 1	weighting is assigned to CILOs, they should add up to 100%.	100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description CILO No.		No.			Hours /
		1	2	3	4	week (if applicable)
Lectures	Introducing theory, concepts and problem solving	\checkmark	\checkmark	\checkmark	\checkmark	
Tutorials	Introducing theory, concepts and problem solving	\checkmark	\checkmark	\checkmark	\checkmark	

Semester Hours:	3 hours per week
Lecture/Tutorial/Laboratory Mix:	Lecture (-); Tutorial (-); Laboratory (-)
	Three hours per week including lectures and tutorials. Lectures and tutorials will be conducted in class and/or online via internet.

4. Assessment Tasks/Activities

Assessment Tasks / Activities	CILO No.	Weighting*	Remarks
	1 2 3 4		
Continuous Assessment: 100%			
Tests and/or assignments	\checkmark \checkmark \checkmark \checkmark	100%	
Examination: 0%			
* The weightings should add up to 100%.		100%	

5. Assessment Rubrics

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
Tests and/or assignments	Ability to understand and apply the scientific methods in solving theoretical and application problems.	High	Significant	Basic	Not even reaching marginal levels

Applicable to students admitted in Semester A 2022/23 and thereafter

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent (A+, A, A-)			Marginal (D)	Failure (F)
Tests and/or assignments	Ability to understand and apply the scientific methods in solving theoretical and application problems.	U U	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Elasticity: State of stress and strain at a point, stress-strain relationships; Curved beams, beams on elastic foundations

Non-linear mechanics: Bifurcation, and Chaos; Fractal, Fourier and p-elements; Monte Carlo simulation Plasticity

2. Reading List

2.1 Compulsory Readings

1	
1.	111

2.2 Additional Readings

1.	Eutiquio C. Young, Vector and Tensor Analysis, Marcel Dekker, Inc., New York, 1993.
2.	Y.C. Fung, Foundations of Solid Mechanics, Prentice Hall, Inc., New Jersey, 1965.