City University of Hong Kong Course Syllabus

offered by Department of Architecture and Civil Engineering with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Modern Structural Engineering
Course Code:	CA6608
Course Duration:	1 Semester (Some courses offered in Summer Term may start a few weeks earlier than the normal University schedule. Please check the teaching schedules with CLs before registering for the courses.)
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	BC6608 Advanced Structural Engineering
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

The course aims at introducing modern technologies for structural engineering and their applications. The course focuses on the state-of-the-art theory, analysis and design of structural members and systems with the help of the computer applications.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)		
			A1	A2	A3
1.	Apply advanced techniques for structural analysis and design	35%		\checkmark	
2.	Apply computer applications for structural analysis and design	25%		\checkmark	
3.	Apply the state-of-the art design code for the design of steel structures	40%		\checkmark	
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description		No.	Hours /	
		1	2	3	week (if applicable)
Lecture	Theory, concepts and problem solving	\checkmark	\checkmark	\checkmark	
Hands-on	Computer-aided structural analysis and design		\checkmark		
Tutorial	Design of structures			\checkmark	

Semester Hours:	3 hours per week
Lecture/Tutorial/Laboratory Mix:	Lecture (2); Tutorial (0); Laboratory (1)
	Tutorial / Laboratory 1 hour per week

4. Assessment Tasks/Activities

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks / Activities	CILO No.		Weighting	Remarks	
	1	2	3		
Continuous Assessment: 50%					
Assignments	\checkmark		\checkmark	10%	
Mid-term test	\checkmark		\checkmark	30%	
Individual project		\checkmark		10%	
Examination: 50% (duration: 2 hour(s))					
Examination				50%	
				100%	

To pass a course, a student must obtain minimum marks of 30% in both coursework and examination components, and an overall mark of at least 40%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
Assignments	CAPACITY for SELF- DIRECTED LEARNING to understand the principles of modern structural engineering CAPACITY for structural analysis and design	High	Significant	Basic	Not even reaching marginal levels
Mid-term test	CAPACITY for SELF- DIRECTED LEARNING to understand the principles of plates and shells CAPACITY for structural analysis and design	High	Significant	Basic	Not even reaching marginal levels
Individual project	CAPACITY for structural analysis and design using computer application	High	Significant	Basic	Not even reaching marginal levels
Examination	ABILITY to UNDERSTAND the taught methodology and procedures in using the modelling and calculation techniques ABILITY to APPLY the scientific techniques in solving theoretical and application problems in	High	Significant	Basic	Not even reaching marginal levels

Applicable to students admitted in Semester A 2022/23 and thereafter

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
Assignments	CAPACITY for SELF- DIRECTED LEARNING to understand the principles of modern structural engineering CAPACITY for structural analysis and design	High	Significant	Moderate	Basic	Not even reaching marginal levels
Mid-term test	CAPACITY for SELF- DIRECTED LEARNING to understand the principles of plates and shells CAPACITY for structural analysis and design	High	Significant	Moderate	Basic	Not even reaching marginal levels
Individual project	CAPACITY for structural analysis and design using computer application	High	Significant	Moderate	Basic	Not even reaching marginal levels
Examination	ABILITY to UNDERSTAND the taught methodology and procedures in using the modelling and calculation techniques ABILITY to APPLY the scientific techniques in solving theoretical and application problems in structural engineering	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Advanced structural analysis; Computer-aided structural analysis and design; Column buckling; Lateral torsional buckling; Shear buckling of web; Web bearing and buckling due to transverse force; Design of steel structures.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

BSi, BS EN 1993-1-1: 2005, Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings.
BSi, BS EN 1993-1-5: 2006, Eurocode 3: Design of steel structures - Part 1-5: Plated structural elements.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	J.N. Reddy, An Introduction to the Finite Element Method, 3rd edition, McGraw-Hill, 2006.
2.	Devdas Menon, 2009, Advanced Structural Analysis, Morgan & Claypool.
3.	Buildings Department, 2011, Code of Practice for the Structural Use of Steel, download at: http://www.bd.gov.hk/english/documents/code/SUOS2011.pdf
4.	Buildings Department, 2011, Code of Practice for Dead and Imposed Loads 2011.