City University of Hong Kong Course Syllabus

offered by Department of Architecture and Civil Engineering with effect from Semester A 2023/24

Part I Course Overview

Course Title:	Geotechnics & Civil Engineering Infrastructures
Course Code:	CA5244
Course Duration:	1 Semester (Some courses offered in Summer Term may start a few weeks earlier than the normal University schedule. Please check the teaching schedules with CLs before registering for the courses.)
Credit Units:	3
Level:	P5
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

The course will introduce basic and more advanced concepts of methods of analysis in geotechnics and civil engineering infrastructure systems, providing scientific background and empirical/analytical approaches to solve various problems.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)			
			Al	A2	A3	
1.	Understand fundamental concepts and theories of engineering mechanics and engineering physics/mathematics applied in civil engineering and geotechnics.		\checkmark	✓		
2.	Apply methods of analysis to solve relatively simple engineering systems and express mathematically physical phenomena of significance to civil engineering.		\checkmark	\checkmark		
3.	Understand modelling concepts and equilibrium of forces in engineering systems.		\checkmark	\checkmark		
4.	Apply methods of analysis to solve various geotechnics problems.		\checkmark	\checkmark		
		100%				

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA Brief Description		CILO No.				Hours /
		1	2	3	4	week (if applicable)
Lectures	Explain fundamental concepts and theories in geotechnics and civil engineering systems.	\checkmark	\checkmark	\checkmark	\checkmark	
Tutorials	Solving problems and application of theory in selected topics taught during the lectures.	\checkmark	\checkmark	\checkmark	\checkmark	

Semester Hours:	3 hours per week
Lecture/Tutorial/Laboratory Mix:	Lecture (0); Tutorial (0); Laboratory (0)
	3 hours per week including lectures and tutorials

4. Assessment Tasks/Activities

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks / Activities	CILO No.		Weighting	Remarks		
	1	2	3	4		
Continuous Assessment: 50%						
Assignment(s)	\checkmark	\checkmark	\checkmark	\checkmark	30%	
Mid-term Test	\checkmark	\checkmark	\checkmark	\checkmark	20%	
Examination: 50% (duration: 2 hour(s	s))					
Examination	\checkmark	\checkmark	\checkmark	\checkmark	50%	
					100%	

To pass a course, a student must obtain minimum marks of 30% in both coursework and examination components, and an overall mark of at least 40%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
Assignment(s)	ABILITY to APPLY fundamental concepts and theories in geotechnics and civil engineering infrastructure systems.	High	Significant	Basic	Not even reaching marginal levels
Mid-term Test	ABILITY to APPLY fundamental concepts and theories in geotechnics and civil engineering systems.	High	Significant	Basic	Not even reaching marginal levels
Examination	ABILITY to APPLY fundamental concepts and theories taught in the class to solve various civil engineering problems.	U	Significant	Basic	Not even reaching marginal levels

Applicable to students admitted in Semester A 2022/23 and thereafter

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
Assignment(s)	ABILITY to APPLY fundamental concepts and theories in geotechnics and civil engineering infrastructure systems.	High	Significant	Moderate	Basic	Not even reaching marginal levels
Mid-term Test	ABILITY to APPLY fundamental concepts and theories in geotechnics and civil engineering systems.	High	Significant	Moderate	Basic	Not even reaching marginal levels
Examination	ABILITY to APPLY fundamental concepts and theories taught in the class to solve various civil engineering problems.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Foundation engineering, geotechnics, civil engineering infrastructures, civil engineering systems.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1. Nil

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Coduto, D.P. (2001). Foundation Design: Principles and Practices. 2nd Ed. Prentice-Hall.
2.	Craig, R.F. (2004). Craig's Soil Mechanics. 7th Ed. Spon Press
3.	Atkinson (1993). An Introduction to the Mechanics of Soils and Foundations. Mc-Graw-Hill
4.	Mitchell, J. K. and Soga, K. (2005). Fundamentals of Soil Behavior. Wiley
5.	Budhu M., Foundations and Earth Retaining Structures, (2007), John Wiley & Sons, Inc