City University of Hong Kong Course Syllabus

offered by Department of Biomedical Engineering with effect from Semester B 2023/24

Part I Course Overview

Course Title:	Advanced Optical Microscopy for Biomedical Engineering
Course Code:	BME8140
Course Duration:	1 semester
Credit Units:	3 credits
Level:	<u></u>
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	BME6140 Advanced Optical Microscopy for Biomedical Engineering
Exclusive Courses : <i>(Course Code and Title)</i>	Nil

1. Abstract

This course will provide students with a comprehensive overview of optical microscopy and various imaging technologies, including the latest advances. The course will start with basic concepts in optics, explaining how light-matter interactions generate contrast for imaging, and cover practical basics in optical microscopy. The course will then cover various optical microscopy modalities: widefield, structured illumination, confocal, multiphoton, and light sheet microscopies. The course will also introduce other advanced imaging techniques, including adaptive optics, label-free microscopy, and super-resolution imaging methods. In addition, the course will introduce recent advances in how artificial intelligence (AI) is applied in optical imaging. Upon completion of this course, students will become familiar with all the available options and develop the ability to choose the right tool for their future studies.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighti ng	Discov curricu learnin (please approp	ery-enr lum rel g outco tick riate)	iched ated omes where
			Al	A2	A3
1.	Understand basic concepts in optics, different contrast mechanisms, and practical basics in optical microscopy.		~	~	
2.	Understand the principles of various imaging modalities and advanced imaging techniques.		~	~	
3.	Understand how AI is applied for optical biomedical imaging.		~	~	
4.	Evaluate current literature and present scientific written and oral reports on relevant topics.		~	~	~
		N.A.			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CILO No.				Hours/week (if applicable)
		1	2	3	4	
Lecture	Explain concepts and	✓	~	~	~	2 hours/week
	principles of optical imaging					
Tutorial /	Solve problems based on	✓	√	✓	✓	l hour/week
Quiz	concepts discussed during					
	lectures					
Mini-project	Prepare oral and written		√	√	√	N.A.
	proposals on topic of choice					
	through literature review.					

4. Assessment Tasks/Activities (ATs)

Assessment	CILO No.				Weighting	Remarks				
Tasks/Activities	1	2	3	4						
Continuous Asses	sment:	60%								
Assignments &	✓	~	✓	✓	25 %	Assignments & Quizzes based on				
Quizzes						course modules discussed during the				
						lectures				
Individual term	✓	✓	✓	✓	35 %	Individual term project based on written				
project						report and/or oral presentation. The				
(report +						project will focus on review of a				
presentation)						student-selected imaging technology				
-						and its biomedical applications				
Examination: 40% (duration: 2 hours)										
Examination	✓	√	✓	✓	40%	Final exam at the end of semester on				
						questions based on coursework				
						discussed in the lectures				
					100%					

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment	Criterion	Excellent	Good	Marginal	Failure
Task		(A+, A, A-)	(B+, B)	(B-, C+, C,)	(F)
1.	Ability to describe in detail concepts in optics and optical microscopy,	High	Significant	Basic	Not even reaching
Assignment	principles of different imaging modalities / techniques, and their				marginal levels.
	advantages & limitations.				
2.	Capacity for self-directed learning; quality of literature review; ability	High	Significant	Basic	Not even reaching
Project	to critically assess the topic; quality of scientific presentation: written				marginal levels.
	and oral.				
3.	Ability to describe in detail concepts in optics and optical microscopy,	High	Significant	Basic	Not even reaching
Examination	principles of different imaging modalities / techniques, and their				marginal levels.
	advantages & limitations				
	Ability to choose the most suitable tool for a specific study.				

Applicable to students admitted before Semester A 2022/23

Assessment	Criterion	Excellent	Good	Fair	Marginal	Failure
Task		(A+, A,	(B+, B,	(C+, C,	(D)	(F)
		A-)	B-)	C-)		
1.	Ability to describe in detail concepts in optics and optical microscopy,	High	Significant	Moderate	Basic	Not even reaching
Assignment	principles of different imaging modalities / techniques, and their					marginal levels.
	advantages & limitations.					
2.	Capacity for self-directed learning; quality of literature review; ability	High	Significant	Moderate	Basic	Not even reaching
Project	to critically assess the topic; quality of scientific presentation: written					marginal levels.
	and oral.					
3.	Ability to describe in detail concepts in optics and optical microscopy,	High	Significant	Moderate	Basic	Not even reaching
Examination	principles of different imaging modalities / techniques, and their					marginal levels.
	advantages & limitations					
	Ability to choose the most suitable tool for a specific study.					

Part III Other Information (more details can be provided separately in the teaching plan)

Keyword Syllabus 1.

Optical microscopy, Fluorescence microscopy, Label-free imaging, High-resolution imaging, Super-resolution imaging, AI in optical imaging

Reading List Compulsory Readings

1.	Fundamentals of Light Microscopy and Electronic Imaging 2nd Edition, Douglas B. Murphy, Michael W. Davidson,
2.	Introduction to Optical Microscopy, Jerome Mertz
3.	Scientific articles

2.2 Additional Readings

1.	Introduction to Fourier Optics, Joseph W. Goodman
2.	Introduction to Biophotonics, Paras N. Prasad