City University of Hong Kong Course Syllabus

offered by Department of Biomedical Engineering with effect from Semester A 2022 /2023

Part I Course Overview

Course Title:	Engineering Principles for Drug Delivery
Course Code:	BME8135
Course Duration:	1 Semester
Credit Units:	3 credits
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : <i>(Course Code and Title)</i>	Nil
Equivalent Courses: (Course Code and Title)	BME6135 Engineering Principles for Drug Delivery
Exclusive Courses : (Course Code and Title)	Nil

1. Abstract

Drug delivery aims to modify the exposure of the drugs to people using engineering principles and materials science. It allows the potential of reducing toxicity, increasing efficacy, and improved use. This course is a lecture-based and project-based class. Topics include drug delivery fundamentals and transport mechanisms, materials and formulations for drug delivery, and biomedical applications.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting* (if applicable)	Discovery- curriculum outcomes		arning
		uppneuere)	(please tick	where ap	propriate)
			Al	A2	A3
1.	Explain basic concepts and principles of drug delivery (clinical needs)		~	~	
2.	Analyse the basic working principles of different drug delivery systems in human body		~	~	~
3.	Identify suitable materials, formulations, and devices that can potentially be used to achieve clinically-effective drug delivery			~	v
4.	Design formulations and devices that can achieve clinically-effective delivery of drugs			~	~
* If w	veighting is assigned to CILOs, they should add up to 100%.	N.A.		1	-

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CILO No.			Hours/week (if applicable)	
		1	2	3	4	
Lecture	Explain concepts of drug delivery and	✓	✓	✓	~	2 hrs/week
	the design of drug delivery system					
Tutorial	Recap and expand the materials taught	✓	\checkmark	✓	✓	1 hr/week
	in lectures					
Group	Provide opportunities for students to		\checkmark	\checkmark	✓	
project	integrate the principles taught in					
	lectures through case studies					

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.				Weighting*	Remarks	
	1	2	3	4			
Continuous Assessment: 60%	Continuous Assessment: 60%						
Midterm Test	✓	✓			30%		
Group Project		✓	✓	✓	20%	Promote team-work	
Assignment (including presentation)	~	~	~	~	10%	Encourage independence	
Examination: 40%							
Examination	✓	✓	✓	✓	40%	Duration: 2.5 hours	
* The weighting should add up to 100%.				100%			

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
Midterm Test	Ability to identify essential strategies to transport drugs across the biological barriers in therapy, and to explain the engineering principles behind.	High	Significant	Basic	Not even reaching marginal levels
Group Project	Ability to utilize the materials taught in lectures to analyse and develop customized formulations/devices for specific medical conditions.	High	Significant	Basic	Not even reaching marginal levels
Assignment	Ability to apply the engineering concepts precisely to solve the existing challenges that can not be addressed in current formulation/devices.	High	Significant	Basic	Not even reaching marginal levels
Examination	Ability to analyse the challenges of drug delivery in details, from molecular to cell to system level; and to apply the engineering approach to address these problems.	High	Significant	Basic	Not even reaching marginal levels

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
Midterm Test	Ability to identify essential strategies to transport drugs across the biological barriers in therapy, and to explain the engineering principles behind.	High	Significant	Moderate	Basic	Not even reaching marginal levels
Group Project	Ability to utilize the materials taught in lectures to analyse and develop customized formulations/devices for specific medical conditions.	High	Significant	Moderate	Basic	Not even reaching marginal levels
Assignment	Ability to apply the engineering concepts precisely to solve the existing challenges that can not be addressed in current formulation/devices.	High	Significant	Moderate	Basic	Not even reaching marginal levels
Examination	Ability to analyse the challenges of drug delivery in details, from molecular to cell to system level; and to apply the engineering approach to address these problems.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Drug delivery barriers

- Pharmacokinetics & Pharmacodynamics
- Drug transport in cells, between cells, and through tissues/organs

Formulations

- Conventional pharmaceutical formulations
- Nanoparticle-based drug delivery systems
- Device-based drug delivery systems

Applications

- Topical/transdermal delivery
- GI delivery
- Systematic delivery

2. Reading List

2.1 Compulsory Readings

- Allen, Theresa M., and Pieter R. Cullis. Drug delivery systems: entering the mainstream. Science, 2004, 303: 1818-1822.
- Tibbitt M W, Dahlman J E, Langer R. Emerging frontiers in drug delivery. Journal of the American Chemical Society, 2016, 138(3): 704-717.
- Fenton O S, Olafson K N, Pillai P S, et al. Advances in biomaterials for drug delivery. Advanced Materials, 2018, 30(29): 1705328.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	W. Mark Saltzman. <i>Drug Delivery: Engineering Principles for Drug Therapy (Topics in Chemical Engineering)</i> . 03/2001, Oxford University Press.
2.	Anya M Hillery, Kinam Park. <i>Drug Delivery: Fundamentals and Applications</i> , CRC Press, 09/2016.
3.	Chenjie Xu, Xiaomeng Wang, Manojit Pramanik. <i>Imaging Technologies and Transdermal Delivery in Skin Disorders</i> . 11/2019, Wiley-VCH