City University of Hong Kong Course Syllabus

offered by Department of Biomedical Engineering with effect from Semester A 2022 / 2023

Part I Course Overview

Course Title:	Biomechanics
Course Code:	BME8132
Course Duration:	1 Semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites:	
(Course Code and Title)	Nil
Precursors:	
(Course Code and Title)	Nil
Equivalent Courses : <i>(Course Code and Title)</i>	MBE6121/BME6121 Biomechanics
<i>Exclusive Courses:</i> (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to introduce students to the concepts that are required for the development of biomedical prosthetic devices in the human body; to provide a supportive, directed experiential and cooperative learning environment for students to acquire and develop technique knowledge to enable them solve related engineering problems in various biomedical products.

2. Course Intended Learning Outcomes (CILOs)

		1			
No.	CILOs	Weighting*	Discov	very-eni	riched
		(if	curricu	lum rel	ated
		applicable)	learnin	g outco	omes
			(please	tick	where
			approp	riate)	
-			AI	A2	A3
1.	Describe the essential concepts of biomechanics and their		~		
	impacts on the behavior of physical bodies subject to forces				
	or displacements				
2.	Identify the mechanical engineering problems in			~	
	biomaterials and biomedical devices, explain the problems				
	with critical thinking generated from mechanics concepts,				
	and solve the problems with mechanics theory				
3.	Apply the biomechanics knowledge to explain structural				✓
	and functional behavior of biomedical applications by				
	conducting a group project				
4	Present the background, literature information,			✓	~
	methodology and results or conclusion of the group project				
	with both scientific written reports and oral presentation				
* If w	eighting is assigned to CILOs, they should add up to 100%.	N.A.			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description		O No.		Hours/week	
		1	2	3	4	(ii applicable)
Lecture	In classroom lectures are focused to develop the conceptual understanding of biomechanics and practical applications in various biomedical products that are in day-today use.	√	✓			2 hrs/week
Tutorial/Demo sessions	Tutorial/Demo sessions in classroom or in laboratory are to show students a clearer image of the real world biomedical applications. Students are expected to be actively involved in the process of learning by diagnosing and solving a strategically important real-life problem by applying the engineering concepts and associated methodologies.			V	V	1 hr/week

4. Assessment Tasks/Activities (ATs)

Assessment	CILO No.				Weighting*	Remarks	
Tasks/Activities	1	2	3	4			
Continuous Assessmen	Continuous Assessment: 60%						
In-class Test	✓	~			20%	The in-class test is to assess students' understanding on the basic concepts of mechanics and the working methodology in various bio- applications.	
Oral presentation and project report			~	~	40%	The oral presentation and project report are to assess students' capability on identifying and solving strategic biomechanics problems.	
Examination: 40 %							
Examination	~	\checkmark			40%	Duration: 2 hours	
* The weightings shoul	d add	up to 1	00%.		100%		

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. In-class test	Describe the principles of biomechanics and mechanical design concepts to provide solutions to related problems.	High	Significant	Basic	Not even reaching marginal levels
2. Group-project report and presentation	Ability to identify problems and propose- methods in analysing/solving biomechanics related problems in real life.	High	Significant	Basic	Not even reaching marginal levels
3. Examination	Explain the fundamental concepts and working principles of biomechanics and design, select proper machine elements and solve problems.	High	Significant	Basic	Not even reaching marginal levels

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. In-class test	Describe the principles of biomechanics and mechanical design concepts to provide solutions to related problems.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Group-project report and presentation	Ability to identify problems and propose methods in analysing/solving biomechanics related problems in real life.	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Examination	Explain the fundamental concepts and working principles of biomechanics and design, select proper machine elements and solve problems.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

- Biomechanics, biomaterials, cells, tissues, organs, implants, human musculoskeletal system, biomedical devices, cell/surface interactions, endovascular system, drug delivery, dental implants, hip/knee implants, doctor and patients, ethical issues
- Solid mechanics, fluid mechanics, physical bodies, vector, force, displacement, moment, mechanical properties, Hooke's law, stress, strain, elasticity, plasticity, viscoelasticity, fracture, fatigue, wear, corrosion, toughening of materials, composites
- Problem identification and solving techniques, reporting and presentation

In addition to the examination and in-class test, students are required to learn through a group project in order to improve their understanding on strategic thinking, problem solving, team working processes, the relationships and interactions between the fields of knowledge that they have learnt in this and other courses.

2. Reading List

2.1 Compulsory Readings

1.	Lecture notes and other teaching materials posted in on-line learning system.
2.	Biomechanics: Concepts and Computation (Cambridge Texts in Biomedical Engineering), Cees
	Oomens, Marcel Brekelmans and Frank Baaijens, Cambridge University Press, 2009

2.2 Additional Readings

1.	Biomechanics: Mechanical Properties of Living Tissues, Y.C. Fung, Springer, 1993 (Second
	Edition)
2.	Fundamentals of Biomechanics, Duane Knudson, Springer, 2007 (Second Edition)
3.	Introductory Biomechanics: from Cells to Organisms, C. Ross Ethier and Craig A. Simmons,
	Cambridge University Press, 2007
4	Biomechanics: Circulation, Y.C. Fung, Springer, 2010
5	Biomechanics: Principles and Applications, D.R. Peterson and J.D. Bronzino, Editors, CRC
	Press, 2008
6	Biomaterials Science: An Introduction to Materials in Medicine, B.D. Ratner, A.S. Hoffman,
	F.J. Schoen and J.E. Lemons, Editors, Academic Press, 2004 (Second Edition)
7	Biomechanics in the Muskuloskeletal System, M. Panjabi & A.A. White II, Philadelphia, PA,
	2001
8	Basic Orthopedic Biomechanics, V.C. Mow and W.C. Hayes, Lippincott-Willimas & Wilkins
	Press, 1997
9	An Introduction to Tissue-Biomaterials Interactions, K.C. Dee, D.A. Puleo and R. Bizios,
	Wiley-Liss, John Wiley & Sons, 2002