City University of Hong Kong Course Syllabus

offered by Department of Biomedical Engineering with effect from Semester A 2022/23

Part I Course Over	view
Course Title:	AI in Medical Imaging
Course Code:	BME6139
Course Duration:	1 semester
Credit Units:	3 credits
Level:	P6
Proposed Area: (for GE courses only)	NA
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

AI in medical imaging is experiencing tremendous growth over the world. Biomedical imaging and its analysis are fundamental to understanding, visualizing, and quantifying medical images in clinical applications. With the help of automated and quantitative image analysis techniques, disease diagnosis will be easier/faster and more accurate and leading to significant development in medicine in general. The goal of this course is to help students develop skills in artificial intelligence and machine learning techniques applied to biomedical image analysis. This course will cover the history and the state-of-the-art of the development and deployment of AI in medical imaging. Specifically, the following topics will be covered:

- •Basics of radiological image modalities and their clinical use
- •Introduction to medical image computing and machine learning
- •Medical image registration, segmentation, visualization
- •Machine learning/deep learning in medical imaging
- •Frontline of AI in medical imaging

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discov curricu learnin (please approp	llum re g outc tick w	omes vhere
1.	Describe the basic concepts of Radiological Image		A1	<i>A2</i> ✓	A3
	Modalities.				
2.	Describe the basic concepts and goals of machine learning.			√	
3.	Explain the fundamental mechanism, and applications of representative deep learning in medical imaging.			√	
4.	Interpret the application of AI and deep learning in clinical imaging. Discuss the state-of-the-art AI in medical imaging system.		√	√	
5.	Identify the open challenges and evaluate the candidate solutions.		√	√	√
6.	Apply the machine learning-level integration and candidate strategies to propose a novel clinical AI system to address problems derived from real-world challenges.		√	√	√
		I	1		

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CII	CILO No.		Hours/week (if			
		1	2	3	4	5	6	applicable)
Lecture	Explain the concepts, working principles, designs, and analytical methods related with the robotic systems for minimally invasive healthcare, and discuss representative robotic systems.	√	√	√	√	√	√	3 hrs/week

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities		CIL	O No	-				Weighting	Remarks
		1	2	3	4	5	6		
	Continuous Asses	sment	: 50)%		l			
Problem-b	ased learning	✓	√	√	√			10%	
Proposal		√	√	√	√			10%	
Presentation	Presentations/projects				√	√	√	30%	Promote teamwork
	Examination: 50)%	•			•	•		
Examination		√	√	√	√	√		50%	Duration: 2 hours
		•	•		•			100%	

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-,C+,C)	(F)
Problem-based	Ability to interpret the basic concepts and methodology of machine	High	Significant	Basic	Below marginal
learning	learning systems for minimally medical imaging.				level
Presentations/projects	Ability to apply the algorithm-level integration of different machine	High	Significant	Basic	Below marginal
	learning to propose novel AI systems to address problems derived from				level
	the real-world medical imaging challenges.				
Examination	Ability to understand basic concepts, principles, design methods and	High	Significant	Basic	Below marginal
	analysis skills related with AI in medical imaging.				level

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
Problem-based learning	Ability to interpret the basic concepts and methodology of machine learning systems for minimally medical imaging.	High	Significant	Moderate	Basic	Below marginal level
Presentations/projects	Ability to apply the algorithm-level integration of different machine learning to propose novel AI systems to address problems derived from the real-world medical imaging challenges.	High	Significant	Moderate	Basic	Below marginal level
Examination	Ability to understand basic concepts, principles, design methods and analysis skills related with AI in medical imaging.	High	Significant	Moderate	Basic	Below marginal level

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

General keywords

- AI
- Machine learning
- Deep learning

Applications

- Segmentation
- Registration
- Computer aided diagnosis

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1	Lia Morra, Silvia Delsanto, and Loredana Correale, Artificial Intelligence in Medical Imaging: From Theory to Clinical Practice. CRC Press, 2020.
2	Insight into Images: Principles and Practice for Segmentation, Registration and Image Analysis, Terry S. Yoo (Editor) (FREE).

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1	Image Processing, Analysis, and Machine Vision. M. Sonka, V. Hlavac, R. Boyle. Nelson
1	Engineering, 2014.
2	Visual Computing for Medicine: Theory, Algorithms, and Applications. B. Preim, C. Botha.
2	Morgan Kaufmann, 2013.
3	Medical Image Registration. J. Hajnal, D. Hill, D. Hawkes (eds). CRC Press, 2001.
4	Pattern Recognition and Machine Learning. C. Bishop. Springer, 2007.