City University of Hong Kong Course Syllabus

offered by Department of Biostatistics with effect from Semester A 2023/24

Part I Course Overview

Course Title:	Selected Topics in Biostatistics
Course Code:	BIOS8005
Course Coue.	BI038005
	One Semester
Course Duration:	
Credit Units:	3
Level:	R8
	KO
Medium of	
Instruction:	English
Mallana	
Medium of Assessment:	English
Prerequisites:	Nil
(Course Code and Title)	NII
Precursors:	
(Course Code and Title)	Nil
Equivalant Courses	
Equivalent Courses : (Course Code and Title)	Nil
(
Exclusive Courses:	N7'1
(Course Code and Title)	Nil

Part II Course Details

1. Abstract

The course aims to introduce research students to one active, advanced and specialized field in Biostatistics (e.g. causal inference, genomic analysis, high-dimensional data analysis, post-model selection, reinforcement learning, survival analysis, time series analysis, etc.). It will help students to develop a solid and comprehensive understanding of the fundamental concepts, methods and theories in the chosen field and equip them with necessary techniques and knowledge for conducting independent and innovative research.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting*	Discov	very-en	riched	
		(if	curricu	ılum re	lated	
		applicable)	learnir	ng outco	omes	
				e tick		
			· •	appropriate)		
			Al	A2	A3	
1.	Explain the fundamental concepts and methods.	20%	\checkmark	\checkmark		
2.	Develop a solid understanding of the techniques.	20%	\checkmark	\checkmark		
3.	Conduct a thorough reading of the literature and know current state-of-the-art tools.	20%	\checkmark	\checkmark	\checkmark	
4.	Apply the techniques and methods to real data applications.	20%	\checkmark	\checkmark	\checkmark	
5.	Develop independent research skills and abilities	10%	\checkmark	\checkmark	\checkmark	
6.	Effectively communicate and present research results	10%	\checkmark	\checkmark	\checkmark	
		100%				

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CIL	CILO No.				Hours/week (if applicable)	
		1	2	3	4	5	6	
Lectures	Learning through teaching is primarily based on lectures	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	3 hours/week
Assignments	Learning though take-home assignments helps students understand the key concepts and acquire the techniques	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	After class

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CII	LO N	0.				Weighting*	Remarks	
	1	2	3	4	5	6			
Continuous Assessment: 50%									
Assignments	\checkmark	\checkmark	\checkmark	\checkmark			30%	Help to train students with basic knowledge, concepts, and analysis techniques	
Midterm/quizzes	√	✓	✓	√	\checkmark	1	20%	Test students' capabilities in applying the knowledge to solve relevant problems	
Examination: 50% (duration: 3 hours)	✓	✓	✓	✓	✓	\checkmark	50%	Examination questions are designed to see how well students have achieved the learning objectives and acquired the requisite techniques for problem-solving	
							100%		

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
1. Assignments	Problem solving skills	High	Significant	Moderate	Not even reaching marginal levels
2. Midterm/quizzes	Problem solving based on comprehensive understanding	High	Significant	Moderate	Not even reaching marginal levels
3. Examination	Problem solving based on comprehensive understanding	High	Significant	Moderate	Not even reaching marginal levels

Part III Other Information

1. Keyword Syllabus

Causal inference, genomic analysis, high-dimensional data analysis, post-model selection, reinforcement learning, survival analysis, time series analysis

2. Reading List

2.1 Compulsory Readings

Nil.

2.2 Additional Readings

1.	Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction (Cambridge University Press; 1st edition), by Guido W. Imbens and Donald B. Rubin
2.	High-Dimensional Statistics (Cambridge University Press), by Martin J. Wainwright