City University of Hong Kong Course Syllabus

offered by Department of Biostatistics with effect from Semester A 2023/24

Part I Course Overview

Course Title:	Asymptotic Statistics
Course Code:	BIOS8003
Course Coue:	BI038003
	One Semester
Course Duration:	
Credit Units:	3
Create Chitis.	
Level:	R8
Medium of Instruction:	English
instruction.	
Medium of	
Assessment:	English
Prerequisites:	
(Course Code and Title)	Nil
Precursors:	
(Course Code and Title)	Nil
Equivalent Courses:	
(Course Code and Title)	Nil
Exclusive Courses:	
(Course Code and Title)	Nil

Part II Course Details

1. Abstract

The course aims to provide students with adequate theoretical background and mathematical tools to access the literature on biostatistics methodologies and applications. Topics covered include: stochastic convergence; delta method; moment estimator; M- and Z- estimators; Bayes procedures; likelihood ratio tests; chi-square tests; Bayesian/MCMC methods; EM algorithm. Selected topics such as empirical likelihood, U-statistics, counting process methods in survival analysis, functional data analysis, nonparametric estimation, shape-constrained inference, and semiparametric inference and efficiency will also be included.

No.	CILOs	Weighting* (if applicable)	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)			
			Al	A2	A3	
1.	Understand the fundamental concepts in asymptotic statistics	20%	\checkmark		115	
2.	Be familiar with various modes of stochastic convergence	20%	\checkmark	\checkmark		
3.	Acquire the techniques of various statistical estimation and testing procedures	20%	\checkmark	\checkmark	\checkmark	
4.	Ability to apply asymptotic analysis techniques in health-related studies	20%	\checkmark	\checkmark	\checkmark	
5.	Effectively communicate and present research findings from the literature	20%	\checkmark	\checkmark	\checkmark	
	·	100%				

2. Course Intended Learning Outcomes (CILOs)

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability Develop

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description			0.		Hours/week (if applicable)	
		1	2	3	4	5	
Lectures	Learning through teaching is primarily based on lectures	\checkmark	\checkmark	\checkmark	~	\checkmark	3 hours/week
Assignments	Learning though take-home assignments helps students understand the key concepts and acquire the techniques	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	After class

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CI	LO N	0.			Weighting*	Remarks	
	1	2	3	4	5			
Continuous Assessment: 50%			1					
Assignments	 ✓ 	√	√			30%	Help to train students with basic knowledge, concepts, and analysis techniques	
Midterm/quizzes	~	√	√	\checkmark	\checkmark	20%	Test students' capabilities in applying the knowledge to solve relevant problems	
Examination: 50% (duration:3 hours)	✓	1	\checkmark	√	✓	50%	Examination questions are designed to see how well students have achieved the learning objectives and acquired the requisite techniques for problem-solving	
						100%		

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)	
1. Assignments	Problem solving skills	High	Significant	Moderate	Not even reaching marginal levels	
2. Midterm/quizzes	Problem solving based on comprehensive understanding	High	Significant	Moderate	Not even reaching marginal levels	
3. Examination	Problem solving based on comprehensive understanding	High	Significant	Moderate	Not even reaching marginal levels	

Part III Other Information

1. Keyword Syllabus

Stochastic convergence; delta method; moment estimator; M- and Z- estimators; Bayes procedures; U-statistics; likelihood ratio tests; chi-square tests; Bayesian/MCMC methods; EM algorithm.

2. Reading List

2.1 Compulsory Readings

Nil.

2.2 Additional Readings

1. Asymptotic Statistics (Cambridge University Press Series in Statistical and Probabilistic Mathematics), by A. W. van der Vaart.