City University of Hong Kong Course Syllabus

offered by Department of Biostatistics with effect from Semester B 2023/24

Part I Course Overview

Course Title:	Spatial Data Analysis
Course Code:	BIOS6901
Course Duration:	1 semester
Credit Units:	3 CUs
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses : <i>(Course Code and Title)</i>	Nil
Exclusive Courses : <i>(Course Code and Title)</i>	Nil

Part II Course Details

1. Abstract

This course aims to introduce the students to the science and art in dealing with geostatistical data and point patterns, with particular focus on making sense out of the data through design, inference, and diagnostics. Topics covered include geostatistics (with applications to epidemiology), estimation of variogram, ordinary and universal kriging, point process theory, space-time point patters.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)		
			Al	A2	A3
1.	Appreciate the issues involved in choosing appropriate statistical methods for spatial data	15%	\checkmark	\checkmark	
2.	Formulate statistical models for spatial phenomena, and perform parameter estimation under these models by use of suitable computer software	50%		\checkmark	\checkmark
3.	Understand the pros and cons of different methods with ability to critically assess and improve models	35%	\checkmark	\checkmark	\checkmark
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Teaching and Learning Activities (TLAs) (*TLAs designed to facilitate students' achievement of the CILOs.*)

TLA	Brief Description		O No.		Hours/week (if
		1	2	3	applicable)
Teaching	Learning through teaching is primarily based on lectures	\checkmark	\checkmark	\checkmark	3 hours/ week
Assignments	Learning through assignments (including computer assignments) allows students to perform critical problem analysis and develop hands-on skills using software	\checkmark	\checkmark	V	

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.		э.	Weighting	Remarks
	1	2	3		
Continuous Assessment: 60%					
Assignments/Project				30%	
Midterm/				20%	
Class Participation				10%	
Examination: 40%					
Examination (duration: 2 hours)				40%	
				100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
1.	Problem solving	Consistently demonstrates a	Adequately demonstrates an	Demonstrates some	Demonstrates little
Assignments/Project	skills and	thorough understanding of	understanding of spatial data	understanding of spatial data	understanding of spatial data
	software	spatial data analysis	analysis concepts and	analysis concepts and	analysis concepts and is
	knowledge	concepts and applies them to	applies them to moderately	applies them to simple	unable to apply them to
		complex problems	complex problems	problems	problems
2. Class	Communication	Actively participates in class	Participates in class	Minimally participates in	Rarely participates in class
Participation	skills	discussions, group work, and	discussions, group work,	class discussions, group	discussions, group work,
		activities, and consistently	and activities, but not	work, and activities, and	and activities, and does not
		contributes to the learning of	consistently or actively, and	rarely contributes to the	contribute to the learning of
		others	occasionally contributes to	learning of others	others
			the learning of others		
3. Midterm Exam	Problem solving	Demonstrates a	Adequately demonstrates an	Demonstrates some	Demonstrates little
	based on	comprehensive	understanding of spatial data	understanding of spatial data	understanding of spatial data
	comprehensive	understanding of spatial data	analysis concepts and	analysis concepts and	analysis concepts and is
	understanding	analysis concepts and	applies them to moderately	applies them to simple	unable to apply them to
		applies them to complex	complex problems	problems	problems
		problems			
4. Final Exam	Problem solving	Consistently demonstrates a	Adequately demonstrates an	Demonstrates some	Demonstrates little
	based on	comprehensive	understanding of spatial data	understanding of spatial data	understanding of spatial data
	comprehensive	understanding of spatial data	analysis concepts and	analysis concepts and	analysis concepts and is
	understanding	analysis concepts and	applies them to moderately	applies them to simple	unable to apply them to

	applies them to complex	complex problems	problems	problems
	problems			

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Stationarity, variograms, kriging, spatial regression, space-time models, Gibbs-Markov fields, spatial auto-regression, point processes

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

Nil

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Statistics for Spatial Data, by Noel Cressie
2.	Spatial Statistics and Modeling, by Gaetan, Carlo, Guyon, Xavier