City University of Hong Kong Course Syllabus

offered by Department of Biostatistics with effect from Semester A 2023/24

Part I Course Over	view
Course Title:	Probability
Course Code:	BIOS5800
Course Duration:	1 semester
Credit Units:	3 CUs
Level:	P5
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

1

Part II Course Details

1. Abstract

The course aims to present the fundamental principles behind probability and lay down the foundations for understanding various topics such as statistical inference, multivariate analysis, regression modelling and survival analysis. Students will learn how to implement probabilistic methods in various types of applications. Topics covered include: axioms of probability, random variables, distribution functions in one or more dimensions, correlation, moments, conditional probabilities and densities; pseudo-random number generation; survival functions, hazard functions and odds ratios; moment generating functions and characteristic functions; infinite sequences of random variables, weak and strong laws of large numbers and the multivariate central limit theorem.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov		
		(if applicable)	learnin	ılum rel	
		аррпеаоте)		tick	
			approp	riate)	
			AI	A2	A3
1.	Understand the fundamental principles of probability	40%	$\sqrt{}$	√	
2.	Ability to formulate probabilistic models in various types of applications involving public health	40%	1	1	V
3.	Appreciate the relevance of probabilistic thinking in data analysis	20%	1	V	V
		100%			<u>.</u>

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs) (TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	CILO No.		Hours/week (if
		1	2	3	applicable)
Teaching	Learning through teaching based on lectures		V	~	3 hours/ week
Assignments	Learning through assignments allows students to perform critical problem analysis and develop hands-on skills involving probability	√	V	1	

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities		LO N	o.	Weighting	Remarks
	1	2	3		
Continuous Assessment: 60%					
Assignments	1	1	V	40%	
Midterm/quizzes		1	V	20%	
Examination: 40%		ı		1	
Final exam (duration: 2 hours)		1	V	40%	
	1	1		100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
1.	Problem solving	Consistently demonstrates	Adequately demonstrates	Demonstrates some	Demonstrates little
Assignments	skills	a thorough understanding	an understanding of	understanding of	understanding of
		of probability concepts and	probability concepts and	probability concepts and	probability concepts and is
		applies them to complex	applies them to moderately	applies them to simple	unable to apply them to
		problems	complex problems	problems	problems
2. Quizzes	Problem solving	Consistently applies	Adequately applies	Applies probability	Inappropriately or unable
	based on	probability concepts and	probability concepts and	concepts and methods to	to apply probability
	comprehensive	methods to solve complex	methods to solve	solve simple problems with	concepts and methods to
	understanding	problems	moderately complex	limited success	solve problems
			problems		
3. Midterm	Problem solving	Demonstrates a	Adequately demonstrates	Demonstrates some	Demonstrates little
Exam	based on	comprehensive	an understanding of	understanding of	understanding of
	comprehensive	understanding of	probability concepts and	probability concepts and	probability concepts and is
	understanding	probability concepts and	applies them to moderately	applies them to simple	unable to apply them to
		applies them to complex	complex problems	problems	problems
		problems			
4. Final Exam	Problem solving	Consistently demonstrates	Adequately demonstrates	Demonstrates some	Demonstrates little
	based on	a comprehensive	an understanding of	understanding of	understanding of
	comprehensive	understanding of	probability concepts and	probability concepts and	probability concepts and is
	understanding	probability concepts and	applies them to moderately	applies them to simple	unable to apply them to
		applies them to complex	complex problems	problems	problems

	problems		

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Axioms of probability, random variables, distributions, conditional probabilities, laws of large numbers, central limit theorem

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

Nil

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1. Introduction to Probability, Second Edition (Chapman & Hall/CRC Texts in Statistical Science), by Joseph K. Blitzstein and Jessica Hwang