City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A 2017/18

Part I Course Over	view
Course Title:	Wastewater Engineering and Water Quality Assessment
Course Code:	SEE6213
Course Duration:	One semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	SEE8221 Wastewater Engineering and Water Quality Assessment
Exclusive Courses: (Course Code and Title)	Nil

1

Part II Course Details

1. Abstract

The course aims to provide students with the fundamental knowledge on wastewater engineering processes as well as the analytical techniques involved in assessing water quality. State-of-the-art processes in wastewater treatment will also be covered in the course.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	curricu learnin (please approp	ery-enulum rel g outco tick priate)	ated omes where
1	T1 ('C 1 1 'C 1 1'CC)	100/	A1	A2	A3
1.	Identify and classify the different sources of wastewater and their requirement for treatment depending on their discharge or final utilisation.	10%	V		
2.	Describe and perform various analysis of water and wastewater quality assessment.	20%		V	
3.	Design the various physical and chemical unit operations for wastewater treatment.	20%			
4.	Design the various biological unit operations for wastewater treatment.	20%		V	
5.	Describe the principles of various advanced treatment, concepts of water recycling and desalination.	30%			$\sqrt{}$
		100%		•	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description		No.	Hours/week (if			
	-	1	2	3	4	5	applicable)
Lectures	The lectures will cover basic		V	V	√		2
	theories and concepts of						
	wastewater treatment and control						
	methods, techniques and						
	operations of waste treatment						
	plants, and management systems						
	commonly use in Hong Kong.						
Tutorial	Open discussions in tutorial						1
	sessions will be given to students						
	on engineering calculation						
	procedure and formulation						
	techniques.						
Laboratory	Analysis water quality and						
	understand its impact on						
	environment						
Field visit	Recognize the contemporary						
	technology at national levels in						
	addressing environment problems						
	and issues						
Mini projects	Develop innovative and creative						
	solutions to wastewater treatment						
	through teamwork and projects						

Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.					Weighting	Remarks
	1	2	3	4	5		
Continuous Assessment: 70%							
Assignments						20	
Project						30	
Quiz						20	
Examination: 30% (duration: 2 hours, if applicable)							
					100%		

100%

Examination duration: 2 hrs

Percentage of coursework, examination, etc.: 70% by coursework; 30% by exam

To pass a course, a student must do ALL of the following:

- 1) obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- obtain at least 30% of the total marks allocated towards final examination (if applicable); and 2)
- 3) meet the criteria listed in the section on Assessment Rubrics.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
Assignments	Graded assignment in	The student	The student	The student completes	The student completes	The student fails to
	each topic with both	completes all	completes all	all assessment	all assessment	complete all assessment
	calculations and	assessment	assessment	tasks/activities and	tasks/activities but can	tasks/activities
	structured problem	tasks/activities and	tasks/activities and	can describe and	only briefly describe	
	solving	the work	can describe and	explain some	some scientific	
		demonstrates	explain the scientific	scientific principles.	principles.	
		excellent	principles.			
		understanding of the				
		scientific principles				
		and the working				
		mechanisms				
Test	Comprehensive paper	He/she can	He/she provides a	He/she provides	Only some of the	He/she fails to identify
	examination with both	thoroughly identify	detailed evaluation	simple but accurate	analysis is appropriate to	and explain how the
	calculations and	and explain how the	of how the	evaluations of how	show how the principles	principles are applied to
	structured problem	principles are	principles are	the principles are	are applied to	wastewater engineering.
	solving in evaluating	applied to	applied to	applied to wastewater	wastewater engineering.	
	student's learning	wastewater	wastewater	engineering.		
	abilities	engineering.	engineering.			
Mini Project	Analyse and provide	He/she is able to	He/she is able to	He/she can	He/she can communicate	He/she is weak in
	innovative engineering	communicate ideas	communicate ideas	communicate ideas	simple ideas in writing	communicating ideas
	solution in wastewater	effectively and	effectively via	clearly in written texts	and/or in oral	and/or the student's
	treatment	persuasively via	written texts and/or	and/or in oral	presentations.	work shows evidence of
		written texts and/or	oral presentation.	presentations.		plagiarism.
		oral presentation.				

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Composition and classification of wastewater
- Analytical techniques in water quality assessment
- Physical unit operations sedimentation, flocculation, flotation
- Chemical unit operations aeration, pH, chlorination, ion exchange
- Biological treatment aerobic/anaerobic treatment, activated sludge, trickling filter
- Membrane bioreactor (MBR)
- Advanced oxidation processes ozone, UV, Fenton, photo-Fenton, photocatalysis
- Water recycling and desalination

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Metcalf and Eddy /Aecom, Wastewater Engineering: Treatment and Resource Recovery 5th Edition, McGraw-Hill International Edition, 2014.
2.	MIHELCIC, J.R. and ZIMMERMAN, J.J. (2009) Environmental Engineering: Fundamentals, Sustainability, Design. New Jersey: John Wiley & Sons, Ltd.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	MACKENZIE, D. (2010) Water and Wastewater Engineering. New York: McGraw-Hill, Ltd.
2.	METCALF & EDDY: AECOM, Inc. (2007) Water Reuse: Issues, Technologies, and Applications, New York: McGraw-Hill, Ltd.
3.	IZRAIL, S., TUROVSKIY, P. and MATHAI, K. (2006) Wastewater Sludge Processing. New Jersey: John Wiley & Sons, Ltd.
4.	RUSSELL, D.L. (2006) Practical Wastewater Treatment. New Jersey: John Wiley & Sons, Ltd.