City University of Hong Kong Course Syllabus

offered by Department of Mechanical Engineering with effect from Semester B 2019 / 2020

Part I Course Over	view
Course Title:	Bio-Inspired Robots
Course Code:	MNE6115
Course Duration:	1 semester
Credit Units:	3 credits
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	MBE6115 Bio-Inspired Robots / BME6115 Biorobotics
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to expose students to the robotic systems developed by applying concepts from nature to the design of real world engineered systems. The objective is for students to learn the principles behind the bio-inspired robots from biological examples and how they are implemented in robotic systems. Dynamics and locomotion will be discussed. The course intends to enhance students' skills for understanding of dynamics, physics of scaling, and locomotion, taking inspiration from nature.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	ery-en	riched
		(if applicable)	curricu	ılum re	elated
			learnin	g outc	omes
			(please	e tick v	vhere
			approp	riate)	
			A1	A2	A3
1.	To compare and give account of the engineering,		✓	✓	
	bio-inspired, and biomimetic systems.				
2.	To derive the dynamics and governing laws for			✓	
	flying, walking, and different locomotion seen in				
	creatures and robots.				
3.	To examine the basics of multi-agent and			✓	
	decentralised systems in biology and demonstrate				
	their applications and potential in robotic systems.				
4.	To analyse and identify additional underlying			✓	✓
	principles of biological systems of interest and				
	illustrate how to critically apply them to				
	engineering systems.				
		N.A.			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Teaching and Learning Activities (TLAs) (TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description		O N	0.		House/week (if applicable)	
		1	2	3	4	Hours/week (if applicable)	
Lecture	The main teaching activity.					2 hrs/week	
Discussion	Seminar-style interactive discussion					1 hr/week	
	between students themselves and						
	the instructor based on given topics						
	and readings.						

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks
	1	2	3	4		
Continuous Assessment: 100%						
Mid-term test					60%	
Group report and presentation				1	40%	Maximum group size of four students. 10% for the presentation and 30% for the written report.
					100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
Mid-term exam	1. ABILITY to IDENTITY/CONTRAST	High	Significant	Moderate	Basic	Not even
	similarities and differences between engineering, bio-inspired, and bio-mimetic					reaching marginal
	systems.					levels
	2. ABILITY to EMPLOY robotic					
	principles to ANALYSE different					
	locomotion seen in creatures and robots. 3. ABILITY to EXPLAIN and					
	INTERRETE the significance of					
	decentralised systems.					
Group report and	1. CAPACITY for SELF-DIRECTED	High	Significant	Moderate	Basic	Not even
presentation	LEARNING to study biological and					reaching marginal
	robotic systems.					levels
	2. ABILITY to COMMUNICATE and					
	PRESENT the finding in robotic					
	framework.					
	3. ABILITY to critically APPLY					
	biological and physic principles to					
	engineering systems.					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Bio-inspired and bio-mimetic, Flying, Aerial robots, Flapping-wing robots, Terrestrial robots, Walking, Limit cycle, Dynamics, Stability, Physics of scaling, Decentralised systems, Multi-agent systems. Synchronisation.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

N.A.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Tennekes, Hendrik. The simple science of flight: from insects to jumbo jets. MIT press, 2009.
2.	Russ Tedrake. Underactuated Robotics: Algorithms for Walking, Running, Swimming, Flying,
	and Manipulation (Course Notes for MIT 6.832). Downloaded on June 2016 from
	http://underactuated.mit.edu/
3.	Haberland, M., and S. Kim. "On extracting design principles from biology: I. Method? General
	answers to high-level design questions for bioinspired robots." Bioinspiration & biomimetics 10.1
	(2015): 016010.
4.	Ma, Kevin Y., et al. "Controlled flight of a biologically inspired, insect-scale robot." Science
	340.6132 (2013): 603-607.
5.	Werfel, Justin, Kirstin Petersen, and Radhika Nagpal. "Designing collective behavior in a
	termite-inspired robot construction team." Science 343.6172 (2014): 754-758.
6.	Koh, Je-Sung, et al. "Jumping on water: Surface tension-dominated jumping of water striders and
	robotic insects." Science 349.6247 (2015): 517-521.
7.	Cully, Antoine, et al. "Robots that can adapt like animals." Nature 521.7553 (2015): 503-507.