City University of Hong Kong Course Syllabus

offered by Department of Mechanical Engineering with effect from Semester A 2019 / 2020

Part I Course Overview

Course Title:	Risk and Reliability Engineering					
Course Code:	MNE5103					
Course Duration:	1 semester					
Credit Units:	3 credits					
Level:	P5					
Medium of Instruction:	English					
Medium of Assessment:	English					
Prerequisites : (Course Code and Title)	Nil					
Precursors: (Course Code and Title)	SEEM3101 Basic Methodologies and Tools for Risk Engineering or equivalent					
Equivalent Courses : (Course Code and Title)	MBE5103 Risk and Reliability Engineering					
Exclusive Courses : (Course Code and Title)	Nil					

Part II Course Details

1. Abstract

This course aims to present the mathematical modelling and system simulation methods for evaluating, managing and controlling the reliability, safety and risk of complex engineering systems such as the nuclear systems. The objective is to provide the students with the adequate tools for handling with scientific rigor the complexities and uncertainties associated to the problem. Previous knowledge on basic probability theory and statistics is helpful.

The expertise offered is part of the background knowledge of safety, reliability and risk analysts, operators and managers, in the industrial sector, including in particular nuclear.

Practical examples and numerical exercises will be provided in support to the comprehension of the material covered in class.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)		
			A1	A2	A3
1.	Explain the key aspects of reliability and risk engineering.		✓	~	
2.	Apply effectively some of the methods of risk assessment (e.g. hazard identification, fault tree and event tree analyses, etc.).			~	~
3.	Identify the risk-critical points of a system and optimally decide on their elimination or protection of the systems' environment.			✓	~
4.	Implement the risk assessment in the nuclear industry.			~	✓
<u> </u>	I	N.A.		1	I

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description		O N	0.		Hours/week (if applicable)
		1	2	3	4	
Lecture	Lectures on the topics of the	✓	✓	✓	✓	3 hrs/week
	keyword syllabus					
Individual	Students are required to carry out	✓	✓	✓	✓	(20 Hours)
work	self study on webs and search					
Activities	appropriate information/data in					
(Self study)	conjunction with the lecturing					
	materials to accomplish a set of					
	given requirements. The work of the					
	self study will be presented as an					
	individual report for assessment.					

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks		
	1	2	3	4				
Examination: 100%	Examination: 100%							
Mid-term Examination	✓	✓	✓	✓	49%			
Final Examination	✓	✓	✓	\checkmark	51%			
(duration: 2.5 hours)								
					100%			

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Mid-term Examination	Through the mid-term examination, the students will be evaluated on the base knowledge in the risks and reliabilities		Significant	Moderate	Basic	Not even reaching marginal levels
2. Examination	Through the examination, the students will be evaluated on the application knowledge in the risks and reliabilities to nuclear engineering	C	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Definition of reliability, availability, safety, risk; structure of risk analysis
- Probabilistic Risk Assessment (PRA)
- Hazard identification: functional analysis, Hazard Operability (HAZOP) analysis and Failure Modes, Effects and Criticality Analysis (FMECA)
- Reliability and availability of simple systems
- Fault tree and event tree analysis
- Markov models for reliability and availability analysis
- Monte Carlo simulation for reliability and risk analysis
- Common cause failures
- Important measures
- Industrial examples

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

None

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Zio E., An introduction to the basics of reliability and risk analysis, World Scientific, 2007.
2.	Zio E., Computational methods of reliability and risk analysis, World Scientific, 2009.
3.	Zio, E. Baraldi, P. and Cadini F., Basics of reliability and risk analysis: Worked Out Problems and Solutions, World Scientific, 2011.
4.	Kroger, W. and E. Zio, Vulnerable systems, Springer, 2011.