City University of Hong Kong Course Syllabus

offered by Department of Biomedical Engineering with effect from Semester A 2019 / 2020

Part I Course Overview

Course Title:	Manufacturing of Biomedical Devices					
Course Code:	BME6101					
Course Duration:	1 semester					
Credit Units:	3 credits					
Level:	P6					
Medium of Instruction:	English					
Medium of Assessment:	English					
Prerequisites : (Course Code and Title)	Nil					
Precursors : (Course Code and Title)	Nil					
Equivalent Courses : (Course Code and Title)	MBE6101/MBE8103/BME8103 Manufacturing of Biomedical Devices					
Exclusive Courses : (Course Code and Title)	Nil					

Part II Course Details

1. Abstract

Biomedical manufacturing is currently a rapidly growing industry over the past decades. It can be viewed as the application of manufacturing technology to biomedical products, of which the development processes are often tedious and multidisciplinary, involving advanced 3D modelling, surgical machining, pharmaceutical production and biomechanics. This course aims at providing essential knowledge in the biomedical product development (e.g. material properties, fabrication processes and design techniques for different applications) in order to provide ways to speed up the product development cycle. This course is multidisciplinary and covers the principles in mechanical, chemical, biological, and physiological aspects. Students can learn the techniques to apply the acquired knowledge for particular applications they are interested.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discov curricu learnin (please	ery-enr lum rel g outco tick w	iched ated omes here
				A2	A3
1.	Describe the mechanical and biochemical properties of bio-related materials, as well as their major applications as medical devices or other bio-products.			✓	
2.	Explain the principles of the fabrication/manufacturing techniques for existing biomedical devices; and identify the manufacturing processes for the biomedical applications.			~	
3.	Compare the pros and cons of different bio-materials and their corresponding manufacturing processes.		~	~	
4.	Select the appropriate bio-related materials and manufacturing processes for specific applications; and employ basic design principles to specific bio-related products.		~	✓	✓
		N.A.			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CII	CILO No.			Hours/week (if applicable)
		1	2	3	4	
Lecture	In the form of classroom teaching. Case studies, demonstrations of biomedical devices, discussions on selected questions will be arranged to supplement the lectures.	 ✓ 	•	•	~	3 hrs/week

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks
	1	2	3	4		
Continuous Assessment: 509	%					
Problem sets	\checkmark	\checkmark	\checkmark	\checkmark	15 %	Three problem sets are assigned
						in the course and each one
						focuses on one CILO.
Individual term project	✓	✓	\checkmark	\checkmark	35 %	Grading of this individual term
(report + presentation)						project is based on a presentation
						and a final report. The project
						should focus on review of an
						existing biomedical product.
Examination: 50%						
Examination	✓	✓		✓	50%	There is a 2-hour examination at
						the end of the semester. A part
						of the examination contains
						questions specifically designed
						for the MBE6101 students.
					100 %	

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Examination	ABILITY to EXPLAIN the	High	Significant	Moderate	Basic	Not even
	methodology and procedure					reaching
	related to manufacturing of					marginal
	biomedical system, and to					levels
	DESIGN and MODEL defined					
	biomedical systems					
2. Problem sets	ABILITY to EXPLAIN in	High	Significant	Moderate	Basic	Not even
	DETAIL and with the acquired					reaching
	engineering methods for					marginal
	designing and characterizing					levels
	of biomedical devices and for					
	CONSTRUCT proper					
	manufacturing procedures					
3. Individual term project	ABILITY to integrate	High	Significant	Moderate	Basic	Not even
(report + presentation)	multidisciplinary science and					reaching
	engineering knowledge to					marginal
	DESIGN or CONSTRUCT a					levels
	novel biomedical devices with					
	defined applications					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Materials: metals, ceramics, polymers, adhesives.
- **Material properties:** biomaterials, biocompatibility, haemocompatibility, elastic modulus, surface roughness, porosity, nanostructures.
- **Fabrication:** scaffolds, nano/microparticles, rapid prototyping, electro-spinning, self-assembly, solid freeform fabrication, polymer coating, vapour deposition, biomodelling, 3D medical imaging, reverse engineering.
- **Considerations:** cell-material interaction, tissue attachment, bonding criteria, surface pretreatment, corrosion, degradation, ion release, implants, sterilization, surgery and infection.
- **Applications:** biosensors, drug delivery, tissue engineering, orthopaedic devices, internal fixation, joint prostheses, cartilage reconstruction.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1. Lam, R. H. W., and Chen, W. (2019). *Biomedical Devices: Materials, Design and Manufacturing*, New York: Springer Publishing.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Migonney V. (2014). Biomaterials, England: John Wiley & Sons, Inc.
2.	Kucklick, T. R. (2012). The Medical Device R&D Handbook, Florida: CRC Press.
3.	Masataka, Y. (2010). System Design Optimization for Product Manufacturing, London: Springer Publishing.