City University of Hong Kong Course Syllabus offered by Department of Physics with effect from Semester B 2020 / 21

Part I Course Overview

Course Title:	Modern Topics in Engineering and Applied Physics
Course Code:	PHY8505
Course Duration:	One Semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	None
Precursors: (Course Code and Title)	AP3251/PHY3251 Quantum Physics or equivalent
Equivalent Courses : (Course Code and Title)	None
Exclusive Courses: (Course Code and Title)	PHY6505 Modern Topics in Engineering and Applied Physics

1

Part II Course Details

1. Abstract

The aim of the course is to provide students with an introduction to contemporary topics in Applied Physics with technological relevance. The topics match the current research themes of the physics department, including atomic, molecular, and optical physics; low-dimensional systems; soft matter and biophysics; spectroscopy and imaging; theoretical and computational physics.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs#	Weighting*	Discov	ery-enr	riched
		(if	curricu	ılum rel	ated
		applicable)	learnin	g outco	mes
			(please	tick	where
			approp	riate)	
			A1	A2	A3
1.	Be aware of the current development in selected areas in	50	$\sqrt{}$		
	Applied Physics.				
2.	Be able to conduct literature research in selected areas in	50	$\sqrt{}$	$\sqrt{}$	
	Applied Physics.				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CIL	CILO No.			Hours/week	
		1 2			(if		
							applicable)
Lectures	Provide theories, concepts,						
	examples of modern topics in						
	Applied Physics						
Students' presentation	The students will have to select						
	a recent topic in Applied						
	Physics and present it to the						
	class.						

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.					Weighting*	Remarks
	1	2					
Continuous Assessment: 100%							
Quizzes						20%	
Presentation						40%	
Final report						40%	
						100%	

5. Assessment Rubrics

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Quizzes	Demonstrating the understanding of the course materials.	High	Significant	Moderate	Basic	Not reaching marginal level
2. Presentation	Understanding the background and development of the selected topics in applied physics; Identifying the current challenges.	High	Significant	Moderate	Basic	Not reaching marginal level
3. Final report	Understanding the background and development of the selected topics in applied physics; Identifying the current challenges.	High	Significant	Moderate	Basic	Not reaching marginal level

Part III Other Information

1. Keyword Syllabus

The topics match the current research themes of the physics department, including atomic, molecular, and optical physics; low-dimensional systems; soft matter and biophysics; spectroscopy and imaging; theoretical and computational physics.

2. Reading List

2.1 Compulsory Readings

None.

2.2 Additional Readings

1.	Claude Cohen-Tannoudji, Bernard Diu and Franck Laloe, Quantum Mechanics Vols. I								
	and II, John Wiley and Sons 1977.								
2.	Richard P. Feynman, Feynman Lectures on Physics vol. III, Addison Wesley 1965.								
3.	Scott Aaronson, Quantum Computing Since Democritus, Cambridge University Press								
	2013.								
4.	Yanhua Shih, An Introduction to Quantum Optics – Photon and Biphoton Physics, CRC								
	Press, 2011.								
5.	Girish S. Agarwal, Quantum Optics, Cambridge University Press, 2013.								
6.	Michael Rubinstein and Ralph H. Colby, Polymer Physics, OUP Oxford, 2003.								
7.	Topological Aspects of Condensed Matter Physics: Lecture Notes of the Les Houches								
	Summer School: Volume 103, August 2014, DOI:								
	10.1093/acprof:oso/9780198785781.001.0001.								