City University of Hong Kong Course Syllabus

offered by Department of Mechanical Engineering with effect from Semester A 2019 / 2020

Part I Course Overv	riew
Course Title:	Nano-manufacturing
Course Code:	MNE6046
Course Duration:	1 semester
Credit Units:	3 credits
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	MBE6046/MBE8104/MNE8104 Nano-manufacturing
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

More than \$2 trillion/year by 2020 in new technologies and products and 2 million jobs have been projected by nanotechnology. Nanomanufacturing is crucial to bring nanotechnology out of the laboratory into the factory for commercial scale-up and applications. This course aims to introduce the modern multidisciplinary nanomanufacturing to the students and get them prepared for the new industrial revolution led by rapid progresses in nanotechnology. It covers important topics in nanomanufacturing such as top-down and bottom-up manufacturing, reliability and defect control, and many key issues on how to conduct nanomanufacturing today and overcome its many technical barriers. Moreover, this course will also promote discovery learning through Web 2.0.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)		
			A1	A2	A3
1.	Describe the basic knowledge of nanotechnology and			✓	
	nanomanufacturing.				
2.	Explain the main techniques and processes of			✓	
	nanomanufacturing.				
3.	Apply nanomanufacturing techniques to perform			✓	✓
	synthesis and characterization of nanowires/rods.				
4.	Discover interesting application(s) of the synthesized		✓	✓	✓
	nanowires/rods.				
	•	N.A.			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.				Hours/week (if applicable)		
		1	2	3	4			
Lecture	Lectures on the topics of the	✓	✓	✓	✓	26 hrs		
	keyword syllabus; promoting							
	discovery learning through Web							
	2.0.							
Laboratory/Tutorial	Lab experiment projects and		✓	✓	✓	13 hrs		
	tutorial classes; promoting							
	discovery learning through Web							
	2.0.							

Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.		CILO No.		Weighting	Remarks			
	1	2	3	4					
Continuous Assessment: 50%									
Test	✓	✓			20%	20% Marks, 1 hour.			
Labs & Discovery Learning			✓	✓	30%	30% marks; students' performance			
						in on hand lab experiments.			
						•			
Examination: 50% (duration	ı: 2 h	ours)		50% Marks, 2 hours.					
* The weighting should add up to 1	00%.			100%					

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Examination	Answer the questions correctly and properly.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Test	Answer the questions correctly and properly.	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Labs & Discovery Learning	Perform the labs successfully and demonstrate discovery during learning.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Background to nanotechnology and nanomanufacturing, top-down approach, bottom-up approach, combined top-down and bottom-up nanomanufacturing approaches, registration and alignment, reliability and defect control, nanomanufacturing industry survey, leaving the laboratory: regulatory and societal issues confronting nanotechnology commercialization.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1. Editors: Zhaoying Zhou, Zhonglin Wang, Liwei Lin (Eds.), "Microsystems and Nanotechnology", Springer, 2012, ISBN: 978-3-642-18293-8

Online Resources

Online learning material is provided via University computer network.