City University of Hong Kong Course Syllabus

offered by Department of Mathematics with effect from Semester B 2017 / 18

Part I Course Over	view
Course Title:	Programming and Computing in Financial Engineering
Course Code:	MA6628
Course Duration:	1 semester
Credit Units:	3 CUs
Level:	Level 6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	MA5616 Financial Mathematics in Derivative Markets MA5618 Stochastic Analysis and in Finance
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses:	Nil

1

Part II Course Details

1. Abstract

This course aims to

- develop students' comprehensive capability of applying numerical methods to formulate and analyze problems in financial products; and
- explain and evaluate techniques of realizing financial and insurance models through optimal algorithms and computer programming.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting		ery-eni	
		(if	curricu	ılum rel	lated
		applicable)	learnin	g outco	omes
			(please	tick	where
			approp	riate)	
			A1	A2	A3
1.	describe basic issues and framework of computation	20	V		
	in finance				
2.	explain clearly concepts and basic methods of solving	20	V	V	
	partial differential equations.				
3.	implement numerical and computational methods such	20	V	V	
	as finite-difference method, Monte-Carlo simulation,				
	etc. for evaluating more complicated mathematical				
	problems in finance.				
4	analyze, design and implement solutions using	20	V	V	V
	appropriate programming language(s) to assess				
	financial risks and construct financial models in				
	practice				
5	apply numerical methods to model financial phenomena	20	V	V	V
	and analyze other practical problems	20	•	•	•
	and analyze other practical problems	100%		l	
		100/0	1		

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs) (TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description		O No.		Hours/week (if			
		1	2	3	4	5	6	applicable)
teaching	Learning through teaching is	V	V	V	V	V		26 hours in
	primarily based on lectures							total
tutorials	Learning through tutorials is	V	V	V	V	V		13 hours in
	primarily based on interactive							total
	problem solving/hand-on							
	computer exercises allowing							
	instant feedback.							
take-home	Learning through take-home	V	V	V	V	V		After class
assignments	assignments helps students							
	implement basic numerical							
	methods of mathematical							
	finance and actuarial science to							
	analyze solutions of problems							
	with programming tools.							
project(s)	Learning through project(s)					V		After class
	enables students to formulate							
	more sophisticated financial							
	and actuarial problems in a							
	numerical framework with the							
	aid of methods and computing							
	techniques introduced in this							
	course							

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.						Weighting	Remarks
	1	2	3	4	5	6		
Continuous Assessment: 100%								
Test	V	V	V				2550%	
Hand-in assignments	V	V	V	V	V		0 25%	
Essay					V		2550%	
Examination: 0% (duration: hrs, if applicable)								
				•		•	100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Test	Problem solving ability	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Hand-in assignments	Comprehensive understanding	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Essays	Creativity based on learning	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Introduction to partial differential equations. Finite difference method. Monte Carlo simulation. Basic computational issues in finance

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Derivatives Markets, by Robert L. McDonald,
2.	
3.	