City University of Hong Kong Course Syllabus

offered by Department of Mathematics with effect from Semester B 2017 / 18

Part I Course Overview

Applied Partial Differential Equations
MA5601
One Semester
3
P5
English
English
Nil

Part II Course Details

1. Abstract

This course aims to introduce more advanced topics of partial differential equations with an emphasis on their mathematical theory and applications.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discov curricu learnin (please approp	very-en ilum re ig outco e tick priate)	riched lated omes where
			A1	A2	A3
1.	explain clearly mathematical formulation of stationary and time-dependent boundary value problems arising in physical problems.	20%	~		
2.	describe analytic and structural properties of Green's functions.	20%	~	~	
3.	find Green's functions for boundary value problems by various methods including the use of Dirac-delta functions.	20%	~	~	
4.	apply Fourier series and integral transform techniques to obtain solutions of appropriate initial/boundary value problems.	20%	~	V	
5.	state and derive the one-dimensional Euler-Lagrange equation.	10%	\checkmark	~	✓
6.	obtain minimizers of functionals on analytic function spaces as solutions of classical partial differential equations.	10%	~	✓	~
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs) 3.

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.					Hours/week (if	
		1	2	3	4	5	6	applicable)
Lectures	Learning through teaching is	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	39 hours in
	primarily based on lectures.							total
Take-home	Learning through take-home	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	after-class
Assignments	assignments helps students							
	implement more advanced theory							
	and functional analytic techniques							
	of partial differential equations,							
	with applications in mathematical							
	physics.							

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

40% Coursework

60% Examination (Duration: 3 hours, at the end of the semester)

Assessment Tasks/Activities	CILO No.						Weighting	Remarks
	1	2	3	4	5	6		
Continuous Assessment: 40%								
Test	✓	~	~	✓ 			20-40%	Questions are designed for the first part of the course to see how well students have learned classical results in the theory of stationary and time-dependent boundary value problems as well as integral transform techniques in solving these problems.
Hand-in assignments	~	~	V	~	~	~	020%	These are skills based assessment to help students manipulate advanced theory and functional analytic techniques of partial differential equations, and their applications in mathematical physics.
Examination: 60% (duration: 3 hrs, if applicable) Examination question are designed to see far students have ac their intended learnin outcomes. Question primarily be skills a understanding based assess the student's versatility in advance theory and technique underlying solution partial differential equations.						Examination questions are designed to see how far students have achieved their intended learning outcomes. Questions will primarily be skills and understanding based to assess the student's versatility in advanced theory and techniques underlying solutions of partial differential equations.		
							100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Test	Independent problem solving skills on progressive learning based on lecture	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Hand-in assignments	Understanding based on both lecture and outsource reference	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Examination	Comprehensive problem solving skills on learning materials throughout the semester	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

The fundamental stationary and time-dependent boundary value problems of solid and fluid mechanics. Classical and weak solutions. Green's functions. Solutions by Fourier series and Fourier transforms. Euler-Lagrange equation and minimization of functionals.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	
2.	
3.	