City University of Hong Kong Course Syllabus

offered by Department of Information Systems with effect from Semester B 2017 / 2018

Part I Course Overview

Course Title:	Advanced Business Software Construction
Course Code:	IS5312
Course Duration:	One Semester (13 weeks)
Credit Units:	3
Level:	<u>P5</u>
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	IS5311 Business Software Construction
Precursors:	
(Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses : (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to:

The aim of this course is to introduce the students to advanced business programming concepts and skill, with emphasis on business information systems construction. On completion of this course, student should be able to: a) understand object-oriented programming; b) understanding basic algorithms; c) construct simple business software application to solve a particular business problem by integrating OO, multimedia, files and database technologies.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)		
			A1	A2	A3
1.	Design and develop appropriate object oriented programming skill for business software construction.	30%			
2.	Design and develop appropriate multimedia for business software construction.	20%	~	~	~
3.	Design and develop appropriate persistent storage, such as files and databases for business software construction.	25%	~	~	~
4.	Develop basic data structures and algorithms for business software construction.	25%			
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

Lecture	:	13 hours
Laboratory	:	26 hours

TLA	Brief Description		O No.		Hours/week	
		1	2	3	4	(if applicable)
TLA1:	Concepts and general knowledge of advanced	✓	~	✓	✓	
Lecture	business information systems construction are					
	explained. Furthermore, advanced business					
	software construction knowledge and skills, such					
	as object oriented programming, multimedia,					
	files and databases, and basic data structures and					
	algorithms are explained and illustrated using					
	examples to enable students understanding on					
	constructing business information system					
	construction and practical characteristics.					
TLA2:	During laboratory sessions, the following	✓	~	✓	~	
Laboratory	activities are used to reinforce and practice of					
	various business software construction techniques					
	learnt in lectures.					
	<u>Exercises</u> : Hands-on activities using a					
	programming tool (e.g., Microsoft Visual Basic)					
TLA3:	as part of systems development exercises.				\checkmark	
	Students would have to complete a group project requiring them to perform systems development					
Project	activities, aimed at constructing a practical					
	application prototype for business information					
	system construction.					
	system construction.					

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks
	1	2	3	4		
Continuous Assessment: 100%						
AT1: Continuous Assessment	✓	✓	✓	✓	20%	
Participation in class and lab sessions in activities						
such as:						
- a number of take-home exercises						
- class performance						
AT2: Project	✓	✓	✓	~	40%	
Each team of 2 or 3 students will design and develop						
a proposed business information system, by using						
appropriate techniques						
AT3: Individual Lab Test	✓	\checkmark	✓	\checkmark	40%	
The individual lab test is to assess students' overall						
competence level in the domain areas.						
				100%		

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
AT1: Continuous Assessment	Capability to design and develop appropriate object oriented programming skill for business software construction.	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Capability to design and develop appropriate multimedia for business software construction.	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Capability to design and develop appropriate persistent storage, such as files and databases for business software construction.	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Capability to develop basic data structures and algorithms for business software construction.	High	Significant	Moderate	Basic	Not even reaching marginal levels
AT2: Project	Capability to design and develop appropriate object oriented programming skill for business software construction.	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Capability to design and develop appropriate multimedia for business software construction.	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Capability to design and develop appropriate persistent storage, such as files and databases for business software construction.	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Capability to develop basic data structures and algorithms for business software construction.	High	Significant	Moderate	Basic	Not even reaching marginal levels
AT3: Individual Lab Test	Capability to design and develop appropriate object oriented programming skill for business software construction.	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Capability to design and develop appropriate multimedia for business software construction.	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Capability to design and develop appropriate persistent storage, such as files and databases for business software construction.	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Capability to develop basic data structures and algorithms for business software construction.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Object oriented programming, Multimedia, Files, Data structure and algorithms.

Detailed Syllabus:

- Classes and objects
- Inheritance and Polymorphism
- Multimedia applications
- Files and Database connections
- Basic data structures and algorithms for business software solutions
- Business software application examples

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1. Tony Gaddis, <u>Starting Out with Java</u>, From Control Structures through Objects, 6th Edition, Pearson, 2015.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Bradley & Millspaugh, Programming in Visual C# 2008, McGraw-Hill, 2009.
2.	Deitel & Deitel, Java - How to Program, 8th edition, Prentice Hall, 2009.
3.	https://docs.python.org/3/tutorial/index.html