City University of Hong Kong Course Syllabus

offered by Department of Information Systems with effect from Semester A 2017 / 2018

Part I Course Overv	view .
Course Title:	Business Software Construction
Course Code:	IS5311
Course Duration:	One Semester (13 weeks)
Credit Units:	3
Level:	P5
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to:

The aim of this course is to introduce the students to essential business programming concepts and skill, with emphasis on business information systems construction. On completion of this course, student should be able to: a) understand basic problem solving; b) construct simple business software application to solve a particular business problem using a commonly used business programming language, Visual Basic

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discovery-enriched curriculum related learning outcomes (please tick where		ted nes
			appropi	rate)	A3
1.	Describe the foundations of business software construction.	10%	AI	AZ	AS
2.	Design and develop appropriate control structures for business software construction.	30%	√	√	√
3.	Design and develop appropriate modularity for business software construction.	30%	√	✓	✓
4.	Design and develop appropriate simple data structure for business software construction.	30%			
		100%			<u> </u>

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

Lecture : 13 hours Laboratory : 26 hours

TLA	Brief Description		O No.		Hours/week	
		1	2	3	4	(if applicable)
TLA1:	Concepts and general knowledge of business	✓	✓	✓	✓	
Lecture	information systems construction are explained.					
	Furthermore, basic business software					
	construction knowledge and skills, such as					
	control structures, modularity, simple data					
	structure are explained and illustrated using					
	examples to enable students understanding on					
	constructing business information system					
	construction and practical characteristics.					
TLA2:	During laboratory sessions, the following		✓	✓	✓	
Laboratory	activities are used to reinforce and practice of					
	various business software construction techniques					
	learnt in lectures.					
	Exercises: Hands-on activities using a					
	programming tool (e.g., Microsoft Visual Basic)					
	as part of systems development exercises.					
TLA3:	Students would have to complete a group project		✓	✓	✓	
Project	requiring them to perform systems development					
	activities, aimed at constructing a practical					
	application prototype for business information					
	system construction.					

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO	No.			Weighting	Remarks
	1	2	3	4]	
Continuous Assessment: 100%						
AT1: Continuous Assessment	✓	✓	✓	✓	20%	
Participation in class and lab sessions in activities						
such as:						
- a number of take-home exercises						
- class performance						
AT2: Project		✓	✓	✓	40%	
Each team of 2 or 3 students will design and develop						
a proposed business information system, by using						
appropriate techniques						
AT3: Individual Lab Test		✓	✓	✓	40%	
The individual lab test is to assess students' overall						
competence level in the domain areas.						
	•	•	•	•	100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
AT1: Continuous Assessment	Ability to accurately describe all key concepts, and effectively compare and discriminate among the key concepts;	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Ability to creatively, effectively, efficiently and accurately perform programming skills in the area of control structures for business information system development.	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Ability to creatively, effectively, efficiently and accurately perform programming skills in the area of modularity for business information system development.	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Ability to creatively, effectively, efficiently and accurately perform programming skills in the area of simple data structures for business information system development.	High	Significant	Moderate	Basic	Not even reaching marginal levels
AT2: Project	Ability to creatively, effectively, efficiently and accurately perform programming skills in the area of control structures for business information system development.	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Ability to creatively, effectively, efficiently and accurately perform programming skills in the area of modularity for business information system development.	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Ability to creatively, effectively, efficiently and accurately perform programming skills in the area of simple data structures for business information system development.	High	Significant	Moderate	Basic	Not even reaching marginal levels
AT3: Individual Lab Test	Ability to creatively, effectively, efficiently and accurately perform programming skills in the area of control structures for business information system development.	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Ability to creatively, effectively, efficiently and accurately perform programming skills in the area	High	Significant	Moderate	Basic	Not even reaching marginal levels

Course Syllabus

Jun 2017 4

of modularity for business information system development.					
Ability to creatively, effectively, efficiently and accurately perform programming skills in the area of simple data structures for business information system development.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Control structures, Modularity, Data structure, Business software construction.

Detailed Syllabus:

- Introduction to VB.NET and business software solutions
- Program Control
- Program Modularity
- Basic Data Types
- Simple Business Software Application Examples

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Deitel, H.M. & Deitel, P.J., Visual Basic B 2012: How to Program, 6 th edition, Prentice-Hall,
	2012, Schneider, David I.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Bradley and Millspaugh, An Introduction to Programming Using Visual Basic.Net, 9th edition,
	Prentice Hall, 2012.
2.	Programming in Visual Basic 2010, McGraw Hill, 2010.

• Updated SYL template in July 2017.