City University of Hong Kong Course Syllabus

offered by Department of Economics and Finance with effect from Semester <u>A</u> 20<u>17</u>/<u>18</u>

Part I Course Overview

Course Title:	Spreadsheet Modeling in Finance
Course Code:	EF5213
Course Duration:	1 semester
Course Duration.	
Credit Units:	3
ereur emis.	
Level:	Р5
Level.	15
Medium of	English
Instruction:	English
Medium of	
Assessment:	English
Prerequisites:	
(Course Code and Title)	Nil
	EF5050 Derivatives and Risk Management
Precursors:	EF5210 Option Pricing
(Course Code and Title)	EF5250 Stochastics & Calculus for Finance
Equivalent Courses:	
(Course Code and Title)	Nil
Exclusive Courses:	
(Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to enable students to apply integrated spreadsheet programming skills to solve real-life financial problems, to equip students with the capability of performing numerical computations in financial engineering, to provide students with the practical knowledge of modern financial models.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	curricu learnin	tick	lated omes
			Â1	A2	A3
1.	Apply integrated spreadsheet programming skills to	-	\checkmark	\checkmark	
	design effective solution for real-life financial				
	problems.				
2.	Identify the key elements of numerical computation in	-			
	financial engineering, and develop flexible and robust				
	solutions with good programming practices.				
3.	Apply the numerical techniques in financial	-		\checkmark	
	engineering to design complex algorithms and				
	solutions for modern financial models.				
4.	Apply the practical knowledge in financial modelling	-		\checkmark	\checkmark
	to develop integrated numerical solutions for real				
	market products.				
		-			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Teaching and Learning Activities (TLAs) (*TLAs designed to facilitate students' achievement of the CILOs.*)

TLA	Brief Description		LO N	0.		Hours/week(if	
		1	2	3	4	applicable)	
Lectures, class discussions, and computer laboratories	Explain key concepts and theories of modern financial models and numerical computation in lectures. Deliver key numerical techniques and practical knowledge for computer implementation in laboratories	1	√ √	√	<u>4</u> √	3	

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks
	1	2	3	4		
Continuous Assessment: <u>100</u> %						
Assignments and laboratory		\checkmark			100 %	-
work						
Examination: <u>0</u> % (duration:		, if	app	licab	le)	
-					0%	
					100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
Assignments and laboratory work	Demonstrates understanding of the financial models	High	Significant	Moderate	Basic	Not reaching marginal level
	Ability to deliver effective, efficient, flexible, and robust computer solutions with good programming practices					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Numerical and Statistical Computations in EXCEL/VBA GARCH(1,1) Model Finite Difference Method and Crank-Nicholson Scheme Portfolio Mean-Variance Optimization and Markowitz Algorithm Multi-variable Newton-Raphson Procedure Yield Curve Construction using Cubic Spline Binomial Tree Pricing of Exotic Options Black-Derman-Toy Model for Interest Rate Derivatives Monte-Carlo Option Pricings Least-Square Monte-Carlo Pricings of American Options

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

Text(s)

1.	Humphrey Tung, Donny Lai, and Michael Wong with Stephen Ng, Professional
	Financial Computing Using Excel & VBA, John Wiley & Sons, Singapore, 2010,
	ISBN 978-0-470-82439-9.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

Text(s)

1.	Mary Jackson, Advanced Modelling in Finance using EXCEL and VBA, John Wiley
	and Sons, current edition.
2.	Simon Benninga, Financial Modelling, MIT Press, current edition.