City University of Hong Kong Course Syllabus

offered by Department of Electronic Engineering with effect from Semester \underline{B} in $\underline{2017/2018}$

Part I Course Overview	N .
Course Title:	Topics in Security Technology
Course Code:	EE5815
Course Duration:	One Semester (13 weeks)
Credit Units:	3
Level:	P5
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	MA3150 Advanced Mathematical Analysis; or MA3151 Advanced Engineering Mathematics
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to provide students with an understanding of the principles of computer security technologies, including the principles of cryptography, side channel attacks and securities for data, communications, cloud computing and smart cards.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	curricu learnin	g outco	lated omes
			A1	A2	A3
1.	Identify the conceptual difference between threats, vulnerabilities and attack.		√	√	
2.	Recognize techniques and mechanisms for safeguarding an attack.		√	√	√
3.	Identify the use of preventive and logistic techniques for safeguarding a computer system.		√	√	√
4.	Describe the current techniques and anticipated trends in Internet security development, cloud computing security.		√	√	√
5.	Analyse and explain various security issues in different card & Internet technologies.		√	√	√
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description		O No		Hours/week (if		
	_	1	2	3	4	5	applicable)
Lecture	Cover the security theory and security protocol, cryptography.	√	√	√	√	√	24 hrs
Tutorials	Cover security implementation examples, and cryptography examples.	√	√	√	√		12 hrs (Some of the tutorials will be conducted in the laboratory)
Laboratory	Hands-on example with Smart-card systems.					✓	3 hrs

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CII	CILO No.					Weighting	Remarks
	1	2	3	4	5			
Continuous Assessment: 40%								
At least 3 assignments and	√	√	✓	√			40%	
quizzes								
Examination: 60% (duration: 2hrs)								
						100%		

Remark:

To pass the course, students are required to achieve at least 30% in course work and 30% in the examination. Also, 75% laboratory attendance rate must be obtained.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Ī	Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
			(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
	1. Examination	Achievements in CILOs	High	Significant	Moderate	Basic	Not even reaching marginal level
	2. Coursework	Achievements in CILOs	High	Significant	Moderate	Basic	Not even reaching marginal level

6. Constructive Alignment with Programme Outcomes

PILO	How the course contribute to the specific PILO(s)					
1	An ability to apply knowledge of engineering is appropriate to the degree					
	discipline. Students will learn security techniques for enhancing the safety of					
	computer, network and portable devices and apply these techniques to the					
	solution of engineering problems in class.					
2	An ability to design and conduct experiments as well as to analyze and interpret					
	data is appropriate to the degree discipline. Students will learn the programming					
	techniques for smart card and analyze new security technologies.					
3	An ability to design a system, component, or process that conforms to a given					
	specification within realistic constraints is appropriate to the degree discipline.					
	Students will learn design a security system and learn the technique to analysis					
	the risk of the designed system. They are required to work with the constraints					
	specified in the environment including components, interconnectivity and					
	network link.					
4	An ability to evaluate and formulate solutions to system security problems					
	effectively and responsibly as a team member is appropriate to the degree					
	discipline. Students will work in groups of 2 and split the work in amongst them					
	and coordinate the design into a workable system.					
5	An ability to conduct some research, identify, formulate and solve engineering					
	problems is appropriate to the degree discipline. Students will integrate the smart					
	card device and design appropriate software to solve the					
6	design/implementation/integration problems.					
O	An ability to communicate effectively is appropriate to the degree discipline. Students work in groups and they will practice the skill to communicate with each					
	other to prepare the formal laboratory report.					
7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
'	An ability to learn how to manage a team of technologists using necessary					
	engineering tools is appropriate to the degree discipline. Students will be given a chance to present their work in class and collect feedbacks from other students.					
	chance to present their work in class and confect recubacks from other students.					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Threats to Computer Systems

Threats, Vulnerabilities and Attacks, System security Engineering, Threat trees, Categorization of Attacks, Trojan Horse and Viruses, Common Attack Methods.

Preventive Security Approaches

Auditing and Intrusion Detection, Identification and Authentication and Encryption.

Logistic Security Approaches

Key Management protocols -, Access Control, Convert Channels, Composing Security, Privileges and Roles, Security Kernel.

Computer Security Applications

Network Security Methods, Data Base Security Methods, Trusted Network Interpretations, WIFI and P2P security, cloud computing security.

Card Security Applications

Smart Card ISO standards, Security Methods – encryption, key management and access control.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1. Cryptography and Network Security, Fifth Edution, William Stallings, Pearson, 2011.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Ross J. Anderson, <u>Security Engineering: A Guide to Building Dependable Distributed Systems</u> (Wiley; 2 edition (April 14, 2008), ISBN-10: 0470068523)
2.	William Stalling, Lawrie Brown, Computer Security: Principles and Practice (Prentice Hall, 2008, ISBN 0-13-600424-5)
3.	William Stalling, <u>Cryptography and Network Security</u> (Prentice Hall, 2006, ISBN 0-13- 187316-4)
4.	E. Amoroso: Cyber Security (Silicon Press, 2006, ISBN 0929306384)
5.	Matt Bishop, <u>Introduction to Computer Security</u> (Addison-Wesley Professional, 2005, ISBN 0-32-124744-
6.	E. Amoroso: <u>Fundamentals of Computer Security Technology</u> (Prentice Hall, 1994, ISBN 0-13-108929-1)
7.	J.A. Cooper: Computer and Communications Security (McGraw Hill, 1989, ISBN0-07-012926-6)
8.	S.Muffic: Security Mechanisms for Computer Networks (John Wiley & Sons, 1989, ISBN 0-470-21387-6)
9.	J.B. Grimson & H.J. Kugler: <u>Computer Security: the practical issues in a troubled world</u> (North Holland 1985, ISBN 0-444-87801-7)
10.	http://csrc.nist.gov/publications/drafts/800-124/Draft-SP800-124.pdf, DRAFT Guidelines on Cell Phone and PDA Security (National Institute of Standards and Technology, Technology Administration, U.S. Department of Commerce, SP 800-124, Jul 2008)
11.	http://csrc.nist.gov/publications/nistpubs/800-12/handbook.pdf, An Introduction to Computer Security: The NIST Handbook (National Institute of Standards and Technology, Technology Administration, U.S. Department of Commerce, SP 800-12, Oct 1995)