City University of Hong Kong Course Syllabus

offered by Department of Biomedical Sciences with effect from Semester B 2017/2018

Part I Course Over	view
Course Title:	Stem Cell and Regenerative Medicine
Course Code:	BMS8106
Course Duration:	One semester
Credit Units:	_3
Level:	R8
Proposed Area: (for GE courses only)	Arts and Humanities Study of Societies, Social and Business Organisations Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

Stem cells are undifferentiated biological cells that can have the potential to differentiate into cells that are found throughout the body. This fundamental property of stem cells suggests that they can potentially be used to replace degenerative cells within the body, and regenerate the functional capacity of organ systems that have deteriorated because of disease or aging. Thus this course provides an overview of the latest advances in the field of stem cell biology and regenerative medicine including but not limited to fundamental scientific knowledge and technological concepts of stem cells and stem cell based tissue regeneration. The student will examine the underlying principles of the normal processes of repair and regeneration in humans. Various processes on the tissue, organ and organism levels will be used as examples to highlight conserved principles governing tissue repair and regeneration. The student will integrate their prior knowledge of cell and molecular biology, tissue engineering and genetics, to analyse the regulation of processes leading to tissue repair and regeneration.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs [#]	Weighting * (if applicable)	Discovery-enriche d curriculum related learning outcomes (please tick where appropriate)		
			<i>A1</i>	A2	<i>A3</i>
1.	Distinguish the different patterns of tissue repair and organ regeneration in humans		✓		
2.	Discover key molecular players and modulating factors in the biology of repair, regeneration and replacement			✓	
3.	Compare and contrast the operational principles of molecular therapy, stem cell therapy, biologically-inspired materials and novel biomaterials			√	
4.	Comprehend and evaluate current literature on biological functionality and compatibility, and applications of microand nanotechnology of these emerging technologies			✓	
5.	Appraise the various approaches in manipulating the regeneration process in humans		✓		
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%			

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CILO No.				Hours/week (if	
		1	2	3	4	5	applicable)
Lecture, tutorial	To learn through teaching.	✓	✓	✓	✓	✓	39 hours in total
Quiz, test, assignment, presentation, case studies, etc.	To understand basic concepts and theories of curves and surfaces.	✓	✓	✓	√	✓	

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.					Weighting*	Remarks
	1	2	3	4	. 5		
Continuous Assessment: 40%							
Quiz, test, assignment, presentation, case studies, etc.	✓	\	V	′ •	'	40%	
Examination: 60% (duration: 2 hours)							
* The weightings should add up to 100%						100%	

^{*} The weightings should add up to 100%.

5. Assessment Rubrics

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
Quiz, test,	Ability to show the	Outstanding	Substantial	Satisfactory	Barely satisfactory	Unsatisfactory
assignment,	learning progress,	performance on all	performance on all	performance on the	performance on a	performance on a
presentation, case	analyse and express	CILOs. Strong	CILOs. Evidence of	majority of CILOs	number of CILOs.	number of CILOs.
studies, etc.	the synthesis of	evidence of original	grasp of subject,	possibly with a few	Sufficient	Failure to meet
	ideas and	thinking; good	some evidence of	weaknesses. Being	familiarity with the	specified
	knowledge	organization,	critical capacity and	able to profit from	subject matter to	assessment
		capacity to analyse	analytic ability;	the course	enable the student	requirements, little
Examination	Ability to	and synthesize;	reasonable	experience;	to progress without	evidence of
	synthesize, state	superior grasp of	understanding of	understanding of	repeating the	familiarity with the
	and apply the	subject matter;	issues; evidence of	the subject; ability	course.	subject matter;
	principles and	evidence of	familiarity with	to develop solutions		weakness in critical
	subject matter learnt	extensive	literature.	to simple problems		and analytic skills;
	in the course	knowledge base.		in the material.		limited or irrelevant
						use of literature

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

- Biology and technology of tissue repair and organ regeneration
- Key molecules and cells in regeneration: techniques and analysis
- Emerging technologies of molecular and stem cell therapies, tissue engineering
- and novel biomaterials
- Regeneration and aging society
- Medical and ethical implications of regenerative medicine

2. Reading List

2.1 Compulsory Readings

Nil

2.2 Additional Readings

1.	Engineering Biomaterials for Regenerative Medicine: Novel technologies for Clinical
	Applications, editor: Sujata Bhatia, to be published by Springer in Nov 2011, ISBN-
	10:1461410797
2.	Principles of Regenerative Medicine, Bruce Carlson, published by Elsevier