City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester B 2017 /18

Part I Course Overv	riew
Course Title:	Instrumental Methods of Analysis and Laboratory
Course Code:	AP8301
Course Duration:	One semester
Credit Units:	3
Level:	R8
Proposed Area: (for GE courses only)	☐ Arts and Humanities ☐ Study of Societies, Social and Business Organisations ☐ Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	AP5301 Instrumental Methods of Analysis and Laboratory

1

Part II **Course Details**

1. **Abstract**

To provide fundamental and practical understanding of materials characterization techniques.

2. **Course Intended Learning Outcomes (CILOs)**

No.	CILOs#	Weighting* (if		ery-eni ılum rel	
		applicable)		g outco	
		uppricusie)		tick	
			approp	riate)	
			A1	A2	A3
1.	Describe the physical principles of various analytical				
	instruments.				
2.	Apply physical principles to the structural design of				
	each element of the instruments, in particular to those				
	involving electron beam and ion beam.				
3.	Apply selected analytical techniques to common				$\sqrt{}$
	applications.				
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%			

^{*} If weighting is assigned to CILOs, they should add up to 100%.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CIL	CILO No.			Hours/week (if	
		1	2	3	4		applicable)
Lectures	Explain the relevant concepts and applications	V	1	V			
Term Paper	Apply the knowledge to solve practical problems		1	1			
Laboratories	Conduct relevant experiments to obtain practical understanding	V	1	V			

Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

Assessment Tasks/Activities	CILO No.					Weighting*	Remarks
	1	2	3	4			
Continuous Assessment: 50%							
Laboratories						35%	
Term Paper	V	V				15%	
Examination: 50% (duration: 2 hours)							

^{*} The weightings should add up to 100%.

100%

5. Assessment Rubrics

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Laboratory and	Ability to understand	High	Significant	Moderate	Basic	Not even reaching
Term Paper	and explain the					marginal levels
	relevant materials					
2. Final	Ability to understand	High	Significant	Moderate	Basic	Not even reaching
Examination	and explain the					marginal levels
	relevant materials					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

- Overview of analytical techniques
- Optical Microscopy
- Electron Microscopy
- X-ray analysis
- Diffraction techniques
- Scanning probe microscopy
- Surface techniques
- Ion beam techniques
- Nondestructive techniques

2. Reading List

2.1 Compulsory Readings

1. Encyclopedia of Materials Characterization, edited by C Richard Brundle, Charles A Evans, Jr, and Shaun Wilson, Butterworth-Heinemann (1992)

2.2 Additional Readings

1.	X-ray Microanalysis in the Electron Microscope (4 th Edition), by J A Chandler, North
	Holland (1987)
2.	Methods of Surface Analysis: Techniques and Applications, edited J M E Walls,
	Cambridge University Press (1990)
3.	Secondary Ion Mass Spectrometry, by Benninghoven, Rudenauer, and Werner, John
	Wiley & Sons (1987)
4.	Surface Analytical Techniques, by J C Riviere, Oxford University Press (1990)
5.	Modern Techniques of Surface Science, by D P Woodruff and T A Delchar,
	Cambridge University Press (1994)
6.	Analysis of Microelectronic Materials and Devices, edited by M. Grasserbauer and H
	W Werner, John Wiley & Sons (1991)