City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester B 2017/18

Part I Course Overview					
Course Title:	Instrumental Methods of Analysis and Laboratory				
Course Code:	AP5301				
Course Duration:	One semester				
Credit Units:	3				
Level:	P5				
Medium of Instruction:	English				
Medium of Assessment:	English				
Prerequisites: (Course Code and Title)	Nil				
Precursors: (Course Code and Title)	Nil				
Equivalent Courses : (Course Code and Title)	Nil				
Exclusive Courses: (Course Code and Title)	AP8301 Instrumental Methods of Analysis and Laboratory				

Part II Course Details

1. Abstract

To provide fundamental and practical understanding of materials characterization techniques.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	ery-enr	riched
		(if	curricu	ılum rel	ated
		applicable)	learnin	g outco	mes
			(please	tick	where
			approp	riate)	
			A1	A2	A3
1.	Describe the physical principles of various analytical				
	instruments.				
2.	Apply physical principles to the structural design of				
	each element of the instruments, in particular to those				
	involving electron beam and ion beam.				
3.	Apply selected analytical techniques to common				
	applications.				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	CILO No.			Hours/week (if	
		1	2	3	4		applicable)
Lectures	Explain the relevant concepts and applications		1	1			
Term Paper	Apply the knowledge to solve practical problems		1	1			
Laboratories	Conduct relevant experiments to obtain practical understanding		1	1			

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.					Weighting	Remarks
	1	2	3	4			
Continuous Assessment: 50%							
Laboratories						35%	
Term Paper						15%	
Examination: 50% (duration: 2 hours)							

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Laboratory and Term Paper	Ability to understand and explain the relevant materials	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Final Examination	Ability to understand and explain the relevant materials	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

- Overview of analytical techniques
- Optical Microscopy
- Electron Microscopy
- X-ray analysis
- Diffraction techniques
- Scanning probe microscopy
- Surface techniques
- Ion beam techniques
- Nondestructive techniques

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1. Encyclopedia of Materials Characterization, edited by C Richard Brundle, Charles A Evans, Jr, and Shaun Wilson, Butterworth-Heinemann (1992)

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	X-ray Microanalysis in the Electron Microscope (4 th Edition), by J A Chandler, North
	Holland (1987)
2.	Methods of Surface Analysis: Techniques and Applications, edited J M E Walls,
	Cambridge University Press (1990)
3.	Secondary Ion Mass Spectrometry, by Benninghoven, Rudenauer, and Werner, John
	Wiley & Sons (1987)
4.	Surface Analytical Techniques, by J C Riviere, Oxford University Press (1990)
5.	Modern Techniques of Surface Science, by D P Woodruff and T A Delchar,
	Cambridge University Press (1994)
6.	Analysis of Microelectronic Materials and Devices, edited by M. Grasserbauer and H
	W Werner, John Wiley & Sons (1991)