City University of Hong Kong

Information on a Course offered by Department of Electronic Engineering with effect from Semester A 2012/13

Part I

Course Title:	Video and Speech Compression
Course Code:	EE6805
Course Duration:	One semester (13 weeks)
No. of credits:	3
Level:	P6
Medium of Instruction:	English
Prerequisites <i>:</i>	EE5410 Signal Processing or EE3202 Digital Signal Processing or EE3210 Signals & Systems or equivalent
Precursors :	Nil
Equivalent Course :	Nil
Exclusive Courses:	Nil

Part II

Course Aims:

The aim of this course is to provide students with theoretical and technical knowledge in video and speech compression technologies and to simulate students' interest in learning the internal functioning of modern-day speech and video compression systems.

Course Intended Learning Outcomes (CILOs)

Upon successful completion of this course, students should be able to:

No.	CILOs
1.	Describe the general characteristics and modelling of speech and video
	signals, and devise modelling techniques for the analysis of these signals

2.	Apply lossless entropy coding algorithms and analyse the relationship
	between compressibility and source probability distribution
3.	Apply the skills for compression of speech signals and analyse the trade off
	in speech quality, compression ratio and coding complexity
4.	Apply the skills for compression of images and videos and analyse the trade
	off in quality, compression ratio and coding complexity
5	Apply ITU/MPEG standard compression algorithms for coding of speech and
	video signals and evaluate the performance of these standard coding
	algorithms

Teaching and Learning Activities (TLAs)

(Indicative of likely activities and tasks designed to facilitate students' achievement of the CILOs. Final details will be provided to students in their first week of attendance in this course)

CILO 1	Lecture, case study
CILO 2, 4	Lecture, tutorial, case study
CILO 3	Lectures, tutorial, assignment (mini project) for implementing a
	simple speech or image encoder/decoder
CILO 5	Lecture, coder evaluation assignment including group discussion

Mini-projects are designed to encourage students to discover the inter-relationship between various coding strategies in time/frequency domains and to evaluate the practicality of applying compression under real-world situations

Timetabling Information

Pattern	Hours
Lecture:	26
Tutorials:	13*
Laboratory:	
Other activities:	0

*Some of the tutorials will be conducted in the laboratory.

Assessment Tasks/Activities

(Indicative of likely activities and tasks designed to assess how well the students achieve the CILOs. Final details will be provided to students in their first week of attendance in this course)

	Type of assessment tasks	Weighting (if applicable)
Continuous Assessment	Tests, Assignments, (mini project), Tutorial Quizzes and case study	40%
Examination	Written exam	60% 2 hours

Remarks: To pass the course, students are required to achieve at least 35% in course work and 35% in the examination.

Grading of Student Achievement:

Letter Grade	Grade Point	Grade Definitions
A+	4.3	Excellent
A	4.0	
A-	3.7	
B+	3.3	Good
В	3.0	
B-	2.7	

C+	2.3	Adequate
С	2.0	-
C-	1.7	
D	1.0	Marginal
F	0.0	Failure

Constructive Alignment with Programme Outcomes

PILO	How the course contribute to the specific PILO(s)
1, 2, 3	The course provides students with amble opportunities in acquiring knowledge of and evaluation of new coding technologies, and also the applications of mathematics and engineering problem solving skills which are central to the aims of this program.
4, 5	Students are required to complete an assignment designed to gain practical experience in implementing a workable speech coding/decoding system. The analytical and research skills developed are central to the aims of this program.

Part III

Keyword Syllabus:

Principles of Source Compression

Digital representation, source entropy, compression ratio, lossy and lossless compression, Huffman, arithmetic coding

Fundamental concepts in speech

Basic speech representation: speech production, source-filter model for speech generation, human auditory perception. Digitization: sampling and quantization, SNQR and speech quality.

Speech Compression

Linear prediction, LPC parameter representation; PARCOR and LSP, vector quantization, code excited linear predictive (CELP) coding. Issues of rate-distortion, coding complexity and latency, error concealment. Speech compression standards: G.723/G.729, GSM-AMR, MPEG-4.

Fundamental concepts in video

Video signal representation: PAL/NTSC, digitization, colour models; YUV, YIQ, YCbCr.

Video Compression

Basic video compression techniques: chroma subsampling, transform coding; DCT, wavelet, scaled quantization, forward/backward prediction, motion compensation, entropy coding, rate-distortion issues, scalable coding.

Video compression standards: H.261, H.263, MPEG-1,2,4.

Recommended Reading:

Essential Reading

Murat A Tekalp : Digital Video Processing, (Prentice Hall, 1996, ISBN 0-13-190075-7).

John R Deller, JR John G Proakis and John H L Hansen : <u>Discrete-Time Processing of Speech Signals</u>, (MacMillan, 1993, ISBN 0-02-328301-7)

Supplementary Reading

Jerry D. Gibson, et al, "<u>Digital Compression for Multimedia : Principles and Standards</u>," Morgan Kaufmann Publishers, January 1998

Ze-Nian Li and Mark S. Drew : Fundamentals of Multimedia, Prentice Hall, 2004.

K. R. Rao and J. J. Hwang : <u>Techniques & Standards For Image, Video & Audio Coding</u>, Prentice Hall, 1996.

B. Furht, S. W. Smoliar, and H. J. Zhang: <u>Video and Image Processing in Multimedia Systems</u>, Kluwer Academic Publishers, 1995.

Jorg Wilberg, " Codesign for Real-Time Video Applications," Kluwer, November 1997

Ralf Steinmetz and Klara Nahrstedt : <u>Multimedia Fundamentals: Media Coding and Content Processing</u>, Prentice Hall, 2002.

Bishnu S Atal, Vladimir Cuperman, Allen Gersho : <u>Advances in Speech Coding</u>, (Kluwer Academic Publishers, 1991, ISBN 0-7923-9091-1)

W B Kleijn : Speech Coding and Synthesis, (Kluwer Academic Publishers, 1995)

Thomas Barnwell, Kambiz Nayebi and Craig Richardson, "<u>Speech Coding: A Computer Laboratory</u> <u>Textbook</u>", John Wiley & Sons Inc., 1996. ISBN 0-471-51692-9

ITU Standards, G.723, G.728 speech coders

ISO MPEG Audiovisual coding standards.

Online Resources (if any) Nil