Course Syllabus

offered by College/School/Department of Biomedical Sciences with effect from Semester A 2016/2017

Part I Course Overv	iew
Course Title:	Advanced Cell and Molecular Biology
Course Code:	BMS8103
Course Duration:	One semester
Credit Units:	2
Level:	R8
Proposed Area: (for GE courses only)	Arts and Humanities Study of Societies, Social and Business Organisations Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Course Details Part II

1. **Abstract**

(A 150-word description about the course)

This course aims to introduce to postgraduate research students the scope of Cell and Molecular Biology with a strong emphasis on first-hand experience. The students will learn about advanced molecular and cell biology in the context of the latest technological development. The students will acquire various techniques for basic molecular and cell biology experiments. It also aims to encourage students to consider their own research projects and interests based on the knowledge and techniques acquired in this course. This course is based entirely on coursework. The students are expected to complete a precourse reading assignment.

Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs#	Weighting*	Discov	ery-en	riched
		(if	curricu	ılum re	lated
		applicable)	learnir	ng outco	omes
			(please	e tick	where
			approp	riate)	
			A1	A2	<i>A3</i>
1.	Summarise advancement in cell and molecular biology	20%		✓	
2.	Apply molecular and cell biology principles to experiments	30%	✓	✓	
3.	Critically evaluate outcomes and discuss advanced	30%	✓	✓	✓
	approaches to improve outcomes				
4.	Write a report in the format of journal manuscript	20%	✓	✓	√
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%			

^{*} If weighting is assigned to CILOs, they should add up to 100%.

A1:

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.				Hours/week (if
		1	2	3	4	applicable)
Lecture	To learn and understand	✓				2 hours/week
Reading and	advanced knowledge and	✓	✓			(26 hours in
presentation	state-of-the-art					total)
Data analysis and	technologies in cell and			✓		
discussion	molecular biology; To					
Report writing	practice critical analysis and trouble-shooting				√	

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weightin	Remarks
	1	2	3	4	g*	
Continuous Assessment: 100%						
Examination on pre-course reading assignment and lecture materials	✓	✓			40%	
Scientific presentation of data in the format of graphs and figures; Discussion		✓	✓		30%	
Written manuscript in journal publication format				✓	30%	
* The weightings should add up to 100%.					100%	

^{*} The weightings should add up to 100%.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Adequate	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
Examination	Ability to show the	Outstanding	Substantial	Satisfactory	Barely satisfactory	Unsatisfactory
	learning progress,	performance on all	performance on all	performance on the	performance on a	performance on a
	analyse and express	CILOs. Strong	CILOS. Evidence of	majority of CILOS	number of CILOS.	number of CILOS.
	the synthesis of	evidence of original	grasp of subject,	possibly with a few	Sufficient	Failure to meet
Presentation and	ideas and	thinking; good	some evidence of	weaknesses. Being	familiarity with the	specified assessment
discussion	knowledge; Ability	organization,	critical capacity and	able to profit from	subject matter to	requirements, little
	to synthesize, state	capacity to analyse	analytic ability;	the course	enable the student to	evidence of
	and apply the	and synthesize;	reasonable	experience;	progress without	familiarity with the
Written manuscript	principles and	superior grasp of	understanding of	understanding of the	repeating the course.	subject matter;
written manuscript	subject matter learnt	subject matter;	issues; evidence of	subject; ability to		weakness in critical
	in the course	evidence of	familiarity with	develop solutions to		and analytic skills;
		extensive	literature.	simple problems in		limited or irrelevant
		knowledge base.		the material.		use of literature

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Light and fluorescent microscopy; cell culture techniques; measurement of cell growth; immunocytochemistry and immunohistochemistry; DNA and RNA extraction; PCR and gel electrophoresis; gene cloning; online resources

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

Nil

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	How to write dissertations & project reports (2nd edition), McMillan, Weyers, Pearson Education
	books
	ISBN 13: 9780273743835, ISBN10: 027374383X
2.	Reading primary literature: a practical guide to evaluating research articles in biology.
	Gillen. Peasron Education Books
	ISBN13: 9780805345995, ISBN10: 080534599X
3.	Molecular Cell Biology 8 th Edition. Lodish, Berk, Kaiser, Krieger, Bretscher, Ploegh, Amon, Martin.
	ISBN-13: 978-1464183393, ISBN-10: 1464183392
4.	http://www.protocol-online.org/prot/Molecular_Biology/
5.	http://collections.plos.org/ploscompbiol/tensimplerules.php
6.	http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook.html