A few "quantum" and spooky ideas and experiments in electron microscopy

Vincenzo Grillo¹, Amir Tavabi², Enzo Rotunno¹ Lorenzo Viani^{1,3}, Paolo Rosi¹, Alessio Derrico⁴, Alberto Roncaglia⁵, Luca Belsito⁵, Gian Carlo Gazzadi¹, Marco Beleggia³, Stefano Frabboni³, Ebrahim Karimi⁴, Giovanni Maria Vanacore⁶, Rafal E Dunin-Borkowski²

^{1.} Institute of Nanosciences CNR-S3, via G.Campi 213, 41125 Modena, Italy

^{2.} Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, 52425 Jülich, Germany

^{3.} FIM Department, University of Modena and Reggio Emilia, via G. Campi 213/A, 41125 Modena, Italy

^{4.} Department of Physics, University of Ottawa, Ottawa, Ont. K1N 6N5, Canada

^{5.} Institute for Microelectronics and Microsystems- CNR, Via P. Gobetti, 101, 40129 Bologna, Italy

^{6.} Laboratory of Ultrafast Microscopy for Nanoscale Dynamics (LUMiNaD),Department of Materials Science, University of Milano-Bicocca, 20121 Milano, Italy;

The use of quantum methodologies and ideas in electron microscopy is promising and already producing a complete paradigm shift in electron microscopy. In this contribution I will discuss a few interesting ideas and experimental results for my personal approach on the topic of quantum experiments.

There is a common denominator connecting from the new idea of ghost imaging, computational ghost imaging (CGI), coherence determination and inelastic interferometry and I will try to highlight how the present and future TEM technologies can produce a new way of considering elastic and inelastic scattering. The tool for this is the beam shaping technology and I will explain present advances in both the MEMS technology to produce innovative electron optics and the Ultrafast TEM-based near field light-electron beam modulation approach.

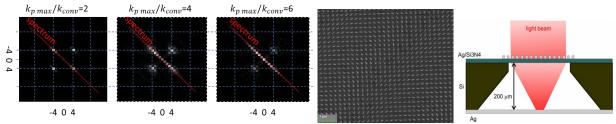


Fig. 1 Left: density matrix models in OAM representation describing incoherence in plasmon scattering. Right: metalenses for electron–optics interaction that allow for a better resolution in controlling the e-beam

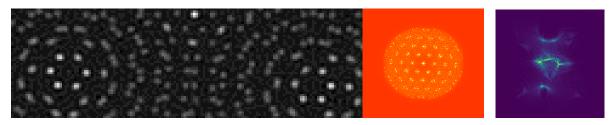


Fig. 2 Example of simulations for CGI reconstruction and experimental image of one of the caustics used to illuminate the sample. CGI can increase the microscope resolution beyond aberrations