Mapping and controlling of optical near fields in an ultrafast transmission electron microscope

Murat Sivis

Max Planck Institute For Multidisciplinary Sciences, Germany 4th Physical Institute, University Of Göttingen, Germany

Electron microscopy allows for the mapping of optical properties of metallic and dielectric nanostructures via cathodoluminescence [1] or electron-energy-loss spectroscopy (EELS) [2]. In recent years, a new method, photon-induced near-field electron microscopy (PINEM) [3], has been established in ultrafast transmission electron microscopes, enabling quantitative measurements of near-field strengths [4]. In this new approach, ultrashort laser pulses (picosecond to femtosecond pulse duration) excite specific spectral modes of a sample, and pulses of high-energy electrons interacting with the associated near-fields experience stimulated energy gain and loss. In contrast to EELS, which probes the intrinsic properties of a nano-optical system with a spectral resolution limited by the electron microscope used (sub-100 meV with a monochromator), PINEM provides an access to the extrinsic optical modes with a spectral resolution limited only by the spectral bandwidth of the laser. This is achieved by electron-energy gain spectroscopy (EEGS), where the near-field strengths are measured for different laser wavelengths [5]. This makes PINEM and EEGS powerful additions to the electron microscopy toolbox.

In this talk I will give an overview of our efforts in the Göttingen UTEM project [6] to exploit these new capabilities of ultrafast transmission electron microscopy for mapping and controlling optical near-fields in metallic and dielectric nano- and microstructures [7,8]. I will present recent studies on mode selective reconstruction of plasmonic near fields [9], measurements of the time evolution of such near-fields with attosecond precision and illustrate how we intend to use these near fields for atomic gas excitation and for probing nonlinear optical excitations.

References

- 1. E.J.R. Vesseur *et al.* Nano Lett. **7**, 9, 2843–2846 (2007).
- 2. J. Nelayah *et al.* Nature Phys **3**, 348–353 (2007).
- 3. B. Barwick *et al.*, Nature **462**, 902 (2009).
- 4. A. Feist *et al.*, Nature **521**, 200 (2015).
- 5. J.W. Henke *et al.* Nature **600**, 653–658 (2021).
- 6. A. Feist *et al.*, Ultramicroscopy **176**, 63 (2017).
- 7. M. Liebtrau *et al.* Light Sci Appl **10**, 82 (2021).
- 8. O. Kfir *et al.* Nature **582**, 46–49 (2020).
- 9. H. Lourenço-Martins *et al.* in preparation (2023).
- 10. J.H. Gaida et al. arXiv:2305.03005 (2023.)