City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A 2024/25

Part I Course Overv	riew
Course Title:	Emerging Energy Technologies
Course Code:	SEE6118
Course Duration:	One semester
Credit Units:	3 credits
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	SEE8125 Emerging Energy Technologies
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

The course aims to provide students with the fundamental knowledge on the emerging energy technologies. This includes technologies that are expected to be the next state-of-the-art in the near future, from innovative clean energy conversion to energy storage. The acquired knowledge shall equip students for the rapidly evolving energy frontiers, and serve as a common ground for potential innovations in these technologies.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	ery-eni	riched
		(if	curricu	ılum re	lated
		applicable)	learnin	g outco	omes
			(please	e tick	where
			approp	riate)	
			A1	A2	<i>A3</i>
1.	Describe basic principles in the conversion of fossil fuel	20%	\checkmark	✓	
	(coal and natural gas) to ultraclean fuel, as well as their				
	importance in the future energy equations; describe the				
	process of carbon capture and storage and its importance in				
	the integration of fossil fuel				
2.	Describe the various means of solar energy conversion	30%	√	✓	✓
	from first to third generation photovoltaic solar cells, and				
	photoelectrochemical conversion; describe the working				
	principles of different types of fuel cells.				
3.	Describe the principles of energy storage through lithium	30%	✓	✓	
	ion batteries and supercapacitors, and their advantages;				
	describe the principles of hydrogen storage such as metal				
	hydrides and carbon nanotubes				
4.	Apply the principles to evaluate the performances and	20%		✓	
	challenges in various technologies.				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

(LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description	CILC	CILO No.			Hours/week
		1	2	3	4	(if applicable)
Lecture	Regular lectures to enrich students with the required	√	√	√		
	science fundamentals for the					

	applications of emerging technologies in energy conversion and storage				
Tutorial	Mathematical-based in-class exercise to consolidate the skills of students in designing energy systems based on emerging technologies	√	√	√	
Topical	In-depth understanding of	√	√	√	
Workgroup	selected technologies by problem-solving				
Presentation	General presentation to share research findings with classmates	√	√		

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting*	Remarks
	1	2	3	4		
Continuous Assessment: 100%						
Assignment			✓	✓	85%	
Oral presentation	√	✓	√	√	15%	
Examination: 0% (duration: , if applicable)						
*TI '1.' 1 11 11 . 1	1000/				1.000/	

^{*} The weightings should add up to 100%. 100%

To pass a course, a student must do ALL of the following:

- 1) obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- 2) obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3) meet the criteria listed in the section on Assessment Rubrics.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Assignment	Ability to apply mathematical skills in designing energy storage and conversion systems based on emerging technologies	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Oral presentation	Ability to convey research findings orally in a convincing and systematic manner	High	Significant	Moderate	Basic	Not even reaching marginal levels

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Assignment	Ability to apply mathematical skills in designing energy storage and conversion systems based on emerging technologies	High	Significant	Moderate to Basic	Not even reaching marginal levels
2. Oral presentation	Ability to convey research findings orally in a convincing and systematic manner	High	Significant	Moderate to Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Ultraclean fossil fuel conversion:

Gas-to-liquid conversion

Clean coal technologies

Carbon capture and storage

Energy conversion:

First, second and third generation solar cells Photoelectrochemical conversion

Hydrogen fuel cells, direct methanol fuel cells, solid oxide fuel cells

Energy storage:

Lithium-ion batteries Supercapacitor Hydrogen storage

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Raimondi, F., Scherer, G.G., Kötz, R., Wokaun, A. Nanoparticles in energy technology: Examples	
	from electrochemistry and catalysis, Angew. Chem. Int. Ed. 2005, 44, 2190.	
2.	Somorjai, G.A., Frei, H., Park, J.Y. Advancing the frontiers in nanocatalysis, biointerfaces and	
	renewable energy conversion by innovations of surface techniques, J. Am. Chem. Soc. 2009, 131,	
	16589.	
3.	Kamat, P.V. Meeting the clean energy demand. Nanostructure architectures for solar energy	
	conversion, J. Phys. Chem. C, 2007, 111, 2834.	
4.	Winter, M., Brodd, R.J. What are batteries, fuel cells, and supercapacitors? <i>Chem. Rev.</i> 2004 , <i>104</i> ,	
	4245.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.) Nil