City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Energy Conversion: Theory and Methodology
Course Code:	SEE6103
Course Duration:	One semester
Credit Units:	3 credits
Level:	P6
Medium of Instruction:	English
mstruction;	English
Medium of	
Assessment:	English
Prerequisites:	
(Course Code and Title)	Nil
Precursors:	
(Course Code and Title)	Nil
Equivalent Courses:	
(Course Code and Title)	Nil
Exclusive Courses:	
(Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course explores the fundamental principles, methods, and advanced technologies associated with energy conversion. It delves into the core principles of thermodynamics, chemistry, and transport in energy conversion techniques. Encompassing a wide spectrum of topics, it scrutinizes the conversion and storage of energy in thermal, mechanical, chemical, and electrochemical processes utilized in power and transportation systems. Emphasis is placed on factors such as efficiency, performance, and the environmental consequences of energy conversion. The course is designed to cultivate students' abilities to analyze diverse energy conversion processes, grasp emerging trends in energy conversion techniques, and enhance their problem-solving skills in tackling energy conversion challenges.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Disco	very-en	riched
		(if	currici	ulum re	lated
		applicable)	learnii	ng outco	omes
			(please	e tick	where
			approp	oriate)	
			A1	A2	A3
1.	Develop a deep understanding of energy conversion theory and principles.	20%	~	\checkmark	
2.	Explore various energy conversion technologies and their applications.	20%	~	\checkmark	
3.	Analyze and evaluate energy efficiency in different conversion processes.	30%	✓	\checkmark	√
4	Grasp emerging trends and innovations in energy conversion research.	10%		\checkmark	V
5	Enhance problem-solving skills in tackling energy conversion challenges.	20%		\checkmark	\checkmark
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

- A2: Ability Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.
- A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

(LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description	CILO No.			Hours/week		
	_	1	2	3	4	5	(if applicable)
Lecture	Lectures to explain key concepts and theories related to energy conversion.	~	~	~	✓	~	2.5 hrs/wk

Tutorial or	Show students prototypes of	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0.5 hr/wk
class demon	energy conversion devices and						
	teach students how to solve						
	problems about energy						
	conversion and efficiency.						

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities				Weighting	Remarks		
	1	2	3	4 5			
Continuous Assessment: 60%							
Assignments	\checkmark	\checkmark	\checkmark	\checkmark		30%	
Homework assignments will							
encompass a mix of technical							
problem-solving and open-							
ended inquiries. These							
assignments serve a dual							
purpose: first, to aid students in							
reinforcing the concepts							
acquired in class, and second,							
to encourage them to explore							
the real-life applications of							
these principles in our							
everyday existence.							
In-class test/quiz	\checkmark	\checkmark	\checkmark	\checkmark		10%	
Problems are assigned to							
students to assess their							
comprehension of the							
concepts.							
Project report	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	20%	
Students will engage in a							
practical, hands-on project							
focused on energy conversion.							
They will be tasked with							
designing a project that applies							
the concepts learned in class,							
providing a tangible							
demonstration of their							
understanding.							
Examination: 40% (duration: 2 h	nours,	if app	olicab	le)		-1	1
						100%	

To pass a course, a student must do ALL of the following:

- 1) obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- 2) obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3) meet the criteria listed in the section on Assessment Rubrics

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Assignment	Proficiency in analyzing and resolving technical problems pertaining to energy conversion	Can use the correct concepts to solve problems without any errors	Can use the correct concepts to solve problems, but may make occasional errors	Can use the correct concepts to solve problems to some extent, but may make significant errors	Can analyze the problem in a correct direction and show some understanding	Fail to correctly analyze a question or solve it
2. In-class test/quiz	Proficiency in analyzing and resolving technical problems pertaining to energy conversion	Can use the correct concepts to solve problems without any errors	Can use the correct concepts to solve problems, but may make occasional errors	Can use the correct concepts to solve problems to some extent, but may make significant errors	Can analyze the problem in a correct direction and show some understanding	Fail to correctly analyze a question or solve it
3. Project report	Ability to analyze the current status and developing trends of energy conversion technologies	Excellent analysis with strong insights	Good summary with acceptable insights	Moderate summary with a few insights	Poor summary with no personal insights	Minimal attempt or irrelevant summary
4. Final exam	Proficiency in analyzing and resolving technical problems pertaining to energy conversion	Can use the correct concepts to solve problems without any errors	Can use the correct concepts to solve problems, but may make occasional errors	Can use the correct concepts to solve problems to some extent, but may make significant errors	Can analyze the problem in a correct direction and show some understanding	Fail to correctly analyze a question or solve it

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Assignment	Proficiency in analyzing and	Can use the correct	Can use the correct	Can use the correct	Fail to correctly analyze
	resolving technical problems	concepts to solve	concepts to solve	concepts to solve	a question or solve it
	pertaining to energy	problems without any	problems, but may	problems to some	•
	conversion	errors	make occasional errors	extent, but may make	

				significant errors	
2. In-class test/quiz	Proficiency in analyzing and resolving technical problems pertaining to energy conversion	Can use the correct concepts to solve problems without any errors	Can use the correct concepts to solve problems, but may make occasional errors	Can use the correct concepts to solve problems to some extent, but may make significant errors	Fail to correctly analyze a question or solve it
3. Project report	Ability to analyze the current status and developing trends of energy conversion technologies	Excellent analysis with strong insights	Good summary with acceptable insights	Poor summary with no personal insights	Minimal attempt or irrelevant summary
4. Final exam	Proficiency in analyzing and resolving technical problems pertaining to energy conversion	Can use the correct concepts to solve problems without any errors	Can use the correct concepts to solve problems, but may make occasional errors	Can use the correct concepts to solve problems to some extent, but may make significant errors	Fail to correctly analyze a question or solve it

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Chemical energy conversion
- Electrochemical energy conversion
- Thermal energy conversion
- Mechanical energy conversion
- Alternative fuels
- Hydrogen
- Fuel cells
- Battery
- Combustion
- Catalysis
- Chemical thermodynamics
- Energy efficiency

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	"Energy Conversion 2nd Edition" by D. Yogi Goswami and Frank Kreith
2.	"Principles of Energy Conversion" by Arch C. J. Trewin
3.	"Introduction to Combustion" by Stephen R. Turns
4.	"Renewable and Efficient Electric Power Systems" by Gilbert M. Masters
5.	"Principles and Applications of Lithium Secondary Batteries" by Jongheop Yi
6.	"Introduction to Energy Storage: Materials, Systems, and Applications" by Richard C. Dorf and
	Daniel J. Turner
7.	"Electrochemical Energy Storage for Renewable Sources and Grid Balancing" by Patrick T.
	Moseley, Jurgen Garche, and Chris Dyer
8.	"Principles and Applications of Lithium Secondary Batteries" by Jongheop Yi
9.	"Introduction to Heat Transfer" by Frank P. Incropera and David P. DeWitt
10.	"Energy Storage: A Nontechnical Guide" by Richard Baxter

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	"Advanced Battery Management Technologies for Electric Vehicles"
2.	"Energy and the Environment" by Robert Ristinen and Jack Kraushaar
3.	"Introduction to Fluid Mechanics" by William S. Janna
4	Hong Kong Government Electrical & Mechanical Services Department website:
	http://www.emsd.gov.hk/