City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A 2024/25

Part I Course Overv	view
Course Title:	Energy, Environment and Sustainable Development
Course Code:	SEE5114
Course Duration:	One semester
Credit Units:	3 credits
Level:	P5
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	SEE8114 Energy, Environment and Sustainable Development
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to develop the ability to examine and appraise the key characteristics, prospects, and challenges associated with contemporary energy choices, their environmental impacts, and comprehend them in relation to global decarbonization efforts and sustainable development goals. It focuses on raising the students' understanding of the basic principles and approaches to assess the technical, economic, environmental, and societal aspects of energy options.

The course is designed with an emphasis on interdisciplinary reflection, systems thinking and sharing of students' own experience. The teaching/learning will be supported by video presentations, seminars, webbased resources, site visit and team-based learning activities.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Disco	very-en	riched
		(if	curricu	ulum re	lated
		applicable)	learnin	ng outco	omes
			(please	e tick	where
			approp	oriate)	
			AI	A2	A3
1.	Describe issues relevant to the evolving energy landscapes	20			
	in the wider economic, social and environmental contexts				
2.	Evaluate economic viability of the processes	20			
3.	Identify and assess environmental impacts of processes	20			
4.	Recognise the interplays between the water and energy	20			
	sectors and compute water footprints of products and				
	processes				
5.	Describe the basic principles of green energy technologies	20			$\sqrt{}$
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

(LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description	CILC	CILO No.			Hours/week	
		1	2	3	4	5	(if applicable)
Lecture	Lectures on contemporary and						2.5
	emerging energy systems,						hours/week
	energy-environment nexus,						
	environmental impact						
	assessment, energy economics,						
	and case studies						

In-class exercises	In-class exercises will be given to students to assess students' concepts and grasp of knowledge taught in class	1	V	1	1	1	
Reading exercises	Reading exercises including reference books, journal papers and related online materials will be provided to students to facilitate self-directed learning.	√ 	V	√ 	√ 	V	
Quizzes	Quizzes will be arranged to assess students' understanding and ability to apply subject-related knowledge learned in class, textbooks and required reading materials.	V	V	\ 	V	\ \ 	
Final Examination	Final Examination will be arranged to assess students' understanding and ability to apply subject-related knowledge learned in class, textbooks and required reading materials.	V	V	V	V	V	

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities Continuous Assessment: 75% In-class exercises Students need to complete inclass exercises and participate	1	O No. 2 √	3	4	5	Weighting	Remarks
In-class exercises Students need to complete inclass exercises and participate	√			1		L	1
In-class exercises Students need to complete inclass exercises and participate	V	1					
actively in discussing these exercises to facilitate their understanding of knowledge taught in class.			,	V	1	5%	
Case study and oral	V		V	V		20%	
presentation Students will work in groups, prepare and deliver oral presentation on energy- environment nexus							
Assignments One assignment on Technoeconomic Study and Life Cycle Assessment to demonstrate their understanding of concepts One assignment on Integrated Bioprocess Design to demonstrate their understanding of concepts	$\sqrt{}$	V	V	V	V	20%	
Reading exercises Reference books, journal papers and online materials related to the 'Case study' will be provided to students via an online platform. Students are required to post sensible questions after reading the materials to demonstrate their understanding of the topics.	√ ·	V	٨	V		5%	
Quizzes Students will be assessed via the examination their understanding of concepts learned in class, textbooks, reading materials and their ability to apply subject-related knowledge.	V	V	V	V	V	25%	
Examination: 25% (duration: 2 h	ours,	ıf app	licabl	e)		100%	

Examination duration: 2 hrs

Percentage of coursework, examination, etc.: 75% by coursework; 25% by exam

To pass a course, a student must do ALL of the following:

- 1) obtain at least 30% of the total marks allocated towards coursework (combination of in-class exercises, case study, oral presentation, if applicable);
- 2) obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3) meet the criteria listed in the section on Assessment Rubrics.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Case study and oral presentation	Ability to identify and analyse a problem in an energy system or a process, and propose possible solutions	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. In-class exercises	Ability to apply concepts and theories to sustainable design of processes in practice	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Assignments	Ability to analyse and calculate practical problems in sustainable processes	High	Significant	Moderate	Basic	Not even reaching marginal levels
4. Reading exercises	Ability to evaluate and make sensible comments on reading materials related to the 'Case study' topic.	High	Significant	Moderate	Basic	Not even reaching marginal levels
5. Quizzes	Ability to analyse and calculate practical problems in energy, environment and sustainability-related issues.	High	Significant	Moderate	Basic	Not even reaching marginal levels
6. Final examination	Ability to analyse and calculate practical problems in energy, environment and sustainability-related issues.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Case study and	Ability to identify and analyse	High	Significant	Moderate	Low
oral presentation	a problem in an energy system				
	or a process, and propose				
	possible solutions				

2. In-class exercises	Ability to apply concepts and theories to sustainable design of processes in practice	High	Significant	Moderate	Low
3. Assignments	Ability to analyse and calculate practical problems in sustainable processes	High	Significant	Moderate	Low
4. Reading exercises	Ability to evaluate and make sensible comments on reading materials related to the 'Case study' topic.	High	Significant	Moderate	Low
5. Quizzes	Ability to analyse and calculate practical problems in energy, environment and sustainability-related issues.	High	Significant	Moderate	Low
6. Final examination	Ability to analyse and calculate practical problems in energy, environment and sustainability-related issues.	High	Significant	Moderate	Low

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Global energy outlook
- Physics of energy conversion
- Sustainable energy systems
- Water-energy nexus
- Water footprint accounting
- Life cycle assessment
- Energy economics

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Richard Wolfson. Energy, environment, and climate. WW Norton & Company, 2017
2.	Jefferson Tester et al. Sustainable energy: choosing among options. MIT press, 2012.
3.	Charles F Kutscher, Jana B. Milford, and Frank Kreith. Principles of sustainable energy
	systems. CRC Press, 2018.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Ibrahim Dincer, Marc A Rosen Exergy: Energy, Environment and Sustainable Development,
	Elsevier, 2020 (3 rd Edition)
2.	John Michael Armstrong, The Future of Energy: The 2021 guide to the energy transition
3.	David JC MacKay, Sustainable Energy –without the hot air, 2008.
4.	Annual energy reports published by McKinsey, BP, Shell, and IEA
5.	Lin, C.S.K., Kaur, G., Li, C., Yang, X. (2021) Waste Valorisation: Rethinking Waste streams in
	a Circular Economy. John Wiley & Sons Inc., New York, United States.