City University of Hong Kong Course Syllabus

offered by School of Data Science with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Statistical Machine Learning II
Course Code:	SDSC6001
Course Duration:	One Semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	SDSC5001 Statistical Machine Learning I
Precursors : (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses : (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course focuses on the theoretical foundation and fundamental methods in unsupervised and supervised learning, and Deep learning methods as well as the discipline of applying Python to program and implement aforementioned algorithms and methods.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discov curricu learnin (please	lum rel g outco	lated omes
			approp A1		A3
1.	Articulate fundamental principles, ideas, theories, and methods of machine learning and deep learning, emphasizing precision and depth of understanding.	20%		<u> </u>	<u> </u>
2.	Evaluate and contrast different machine learning and deep learning models based on their structure, functionality, and applicability.	20%	~		
3.	Implement common machine learning and deep learning techniques to analyze and interpret datasets, demonstrating proficiency with various algorithms.	40%	~	~	~
4.	Develop solutions for practical problems using existing machine learning and deep learning methods and by innovating new algorithms, demonstrating both application and creativity.	20%	\checkmark	~	~
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Learning and Teaching Activities (LTAs) (*LTAs designed to facilitate students' achievement of the CILOs.*)

LTA	Brief Description	CILC	No.	Hours/week		
	-	1	2	3	4	(if
						applicable)
Lecture	Engage in interactive lectures and demonstrations where you will explore and understand the core concepts and methodologies of statistical machine learning. The lectures aim to facilitate your critical thinking and application skills through question-driven discussions and practical examples.	V	✓	~		39 hours in total
Mini-project	Conduct a comprehensive analysis of a typical machine learning problem, provided by the instructor. You will be responsible for developing a solution, documenting your process and findings in a written report, and presenting your results to the class. This project is designed to foster your independent learning skills, supported by structured guidance from the instructor.		×	✓	✓	After class

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks		
	1	2	3	4				
Continuous Assessment: <u>100</u> %								
Test	\checkmark	\checkmark	\checkmark	\checkmark		50%		
Administer a comprehensive								
test to evaluate students'								
understanding of fundamental								
theories, principles, and								
applications in machine								
learning and deep learning.								
The test will consist of both								
theoretical questions and								
practical problems, assessing								
students' ability to apply								
learned concepts to real-world								
datasets.								
Mini-Project	\checkmark	\checkmark	\checkmark	\checkmark		25%		
Undertake a mini-project that								
requires you to apply machine								
learning and deep learning								
methods to a specific problem.								
This project will assess your								
analytical skills, your ability to								
integrate different concepts								
and techniques, and your								
proficiency in designing and								
executing a structured analysis.								
You will need to demonstrate								
how the project's outcomes								
align with the intended								
learning outcomes, particularly								
in terms of innovation and								
practical application.								
Mini-Project Presentation	\checkmark	\checkmark	\checkmark	\checkmark		25%		
Present your mini-project to								
the class, focusing on your								
methodology, findings, and the								
implications of your work.								
This presentation is designed								
to assess your ability to								
communicate complex ideas								
effectively and defend your								
approach and results in a								
professional context. It will								
also evaluate your engagement								
with critical feedback and your								
responsiveness to questions								
from peers and instructors.	<u> </u>		I	1	I	100%		

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Test	Ability to understand and apply the	High	Significant	Moderate	Basic	Not even reaching
	fundamental theory of machine	-	-			marginal level
	learning and deep learning					C
2.Mini-Project	Ability to demonstrate the	High	Significant	Moderate	Basic	Not even reaching
Report	understanding of the basic concepts,	-				marginal level
	fundamental theory, deep learning					-
	methods, and their applications to					
	some datasets.					
3.Mini-Project	Ability to demonstrate how well the	High	Significant	Moderate	Basic	Not even reaching
Presentation	intended learning outcomes are	-	-			marginal level
	achieved.					

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Test	Ability to understand and apply the	High	Significant	Basic	Not even reaching marginal
	fundamental theory of machine				level
	learning and deep learning				
2. Mini-Project	Ability to demonstrate the	High	Significant	Basic	Not even reaching marginal
Report	understanding of the basic concepts,				level
	fundamental theory, deep learning				
	methods, and their applications to				
	some datasets.				
3.Mini-Project	Ability to demonstrate how well the	High	Significant	Basic	Not even reaching marginal
Presentation	intended learning outcomes are	-	-		level
	achieved.				

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus (*An indication of the key topics of the course.*)

Classic Theory of Machine Learning:

Supervised Learning: Support Vector Machine; regularizations; Tree; Matrix Factorization

Unsupervised Learning: Clustering; Principal Component Analysis; Factor Analysis

Deep Neural Networks:

Feed-forward Neural Networks;

Convolutional Neural Networks;

Recurrent Neural Networks;

Autoencoders;

Generative Adversarial Networks;

Self-attention;

Transformer;

Deep Reinforcement Learning;

Graph Neural Networks

Other technologies of Machine Learning and Deep Learning:

Explainable AI;

Model Selection;

Transfer Learning;

Model Selection;

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman, Springer
Lecture Notes

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

NIL