City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Environmental Physics
Course Code:	РНУ6527
Course Duration:	1 semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses : (Course Code and Title)	PHY8527 Environmental Physics

Part II Course Details

1. Abstract

Physics has always been concerned with understanding the phenomena in natural environment. Environmental physics is essential for tacking environmental problems accompanying economic development and maintaining a well-balanced relationship between human activities and natural environment. This course aims to provide students an introduction to environmental physics. The elements of the environment (e.g., gases, liquids, plants, and animals) and their physical properties (e.g., mass, temperature, transport) will be discussed. Emphasis will be put on heat transfer and the effects of various radiations including nuclear radiation on the environment. By the end of this course, students can gain necessary knowledge and skills to address real environmental challenges, such as developing safe and clean energy and dealing with the forecasted climate change.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	ery-enr	riched
		(if	curricu	lum rel	ated
		applicable)	learnin	g outco	omes
			(please	tick	where
			approp	riate)	
			A1	A2	A3
1.	Describe the physical properties of important elements in	20%			
	environment such as gases and liquids.				
2.	Describe the transport properties of heat and mass	20%			
3.	Explain the effect of radiation on plants, animals, and	20%			
	humans				
4.	Develop physical models to estimate various environmental	20%			
	effects			-	
5.	Identify the challenges in developing clean energy, dealing	20%			
	with climate change, and pollutants reduction				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs) (LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description	CILO No.			Hours/week (if			
		1	2	3	4	5		applicable)
1	Lectures		\checkmark			\checkmark		26 hrs/13 wks
2	Tutorials	\checkmark	\checkmark	\checkmark				6 hrs/ 6 wks
3	Group project and presentation							6 hrs/ 6 wks

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.						Weighting	Remarks
	1	2	3	4	5			
Continuous Assessment: 50%								
Assignment		\checkmark	\checkmark				10	
Presentation			\checkmark				20	Group project
Report			\checkmark	\checkmark			20	Group project
Examination: 50% (duration: 2 hours)								
Examination	\checkmark	\checkmark	\checkmark				50	
							100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignment	Understanding important concepts in environmental physics; Ability to apply physics principles and models to estimate various environmental effects	High	Significant	Moderate	Basic	Not reaching marginal level
2. Presentation	Understanding the mechanisms of selected environmental physics topic; Identify challenges and develop possible solutions	High	Significant	Moderate	Basic	Not reaching marginal level
3. Report	Having an in-depth understanding of the physics related to selected environmental topic.	High	Significant	Moderate	Basic	Not reaching marginal level
4. Examination	Ability of solving analytical problems in environmental physics	High	Significant	Moderate	Basic	Not reaching marginal level

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent $(A + A A_{-})$	Good (B+ B)	Marginal $(B_{-}C_{+}C)$	Failure (F)
1. Assignment	Understanding important concepts in environmental physics; Ability to apply physics principles and models to estimate various environmental effects	High	Moderate	Basic	Not reaching marginal level
2. Presentation	Understanding the mechanisms of selected environmental physics topic; Identify challenges and develop possible solutions	High	Moderate	Basic	Not reaching marginal level
3. Report	Having an in-depth understanding of the physics related to selected environmental topic.	High	Moderate	Basic	Not reaching marginal level
4. Examination	Ability of solving analytical problems in environmental physics	High	Moderate	Basic	Not reaching marginal level

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Properties of gases and liquids

^o Pressure, volume, temperature, the first law of thermodynamics, specific heat, latent heat, lapse rate, water vapor

• Water content and potential, stable isotopes

• Transport of heat and mass

[°] General transfer equation, molecular transfer processes, viscosity, heat and thermal conductivity, mass transfer and diffusivity, diffusion coefficients, diffusion of particles

° Radiation environment

 $^{\circ}$ Absorption and emission of radiation, black body radiation, Planck's law, reflection and refraction, radiance and irradiance

° Solar radiation, spectrum of solar radiation, attenuation of solar radiation in the atmosphere, solar radiation at the ground

- ° Terrestrial radiation
- Microclimatology of radiation

^o Radiative properties of natural materials (e.g., water, soils, metals, and animals)

- [°] Radiation interception by solid structures, plant canopies, and animal coats
- ° Nuclear power

[°] Nuclear fission and fusion, relation between radiation and health (e.g., exposure to radiation, radiation from nuclear accidents, and health aspects of fusion)

- The fuel cycle, waste management
- Heat transfer
- ° Convection, conduction, insulation
- ^o Steady state heat balance of water surfaces, soil and vegetation
- Steady state heat balance of animals
- ^o Dynamics of climate system, human-induced climate change, greenhouse effect
- Mass transfer
- [°] Gases and water vapor, ventilation, mass transfer through coats and clothing
- Particles, steady and non-steady motion, particle deposition and transport, dispersion of pollutants
- ° Turbulence

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	"Principles of Environmental Physics, Fourth Edition: Plants, Animals, and the Atmosphere", J.
	Monteith and M. Unsworth, Academic Press, 4th ed., 2013.
2.	"Environmental Physics: Sustainable Energy and Climate Change", E. Boeker and R. V.
	Grondelle, Wiley, 3 rd ed., 2011.
3.	
4.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

