City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Physics at Nanoscale
Course Code:	РНУ6504
Course Duration:	One Semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	PHY3251 Quantum Mechanics or equivalent
Equivalent Courses : <i>(Course Code and Title)</i>	Nil
Exclusive Courses : <i>(Course Code and Title)</i>	PHY8504 Physics at Nanoscale

Part II Course Details

1. Abstract

This course is the introductory course on nanoscience for the MSc and PhD Students in Applied Physics Programme and is designed to familiarize the students to the interdisciplinary aspects of nano-science by integrating important components of the broad research field. While focusing on physics, this integrated approach will cross the traditional disciplines of materials science, biology, chemistry, and electrical engineering. Fundamental properties of materials at the nanoscale, synthesis of nanoparticles/nanomaterials, characterization tools, and properties of nanoscale devices and systems will be covered.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

			1		
No.	CILOs	Weighting	Discov	very-en	riched
		(if	curricu	lum re	lated
		applicable)	learnin	g outco	omes
			(please	tick	where
			approp	riate)	
			Al	A2	A3
1.	Describe the unique interactions and effects occurring at the	25		<	
	nanoscale.			•	
2.	Describe how quantization in nanomaterials impacts	25		<	
	electrical, optical, and magnetic properties.			•	
3.	Describe how nanomaterials are synthesized and integrate	25	<		
	nanomaterials in applications, particularly in the fields of:				
	electronics, energy devices, and medicine/medical devices.				
4.	Demonstrate the capacity for self-directed learning on topics	25			~
	related to nanoscience and nanotechnology.				•
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Learning and Teaching Activities (LTAs) (LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description	CILO No.			Hours/week		
	_	1	2	3	4		(if applicable)
Lecture	Explain key concepts and theory of topics of the course	~	~	~			2
Tutorial	Explain how some problems are solved and the techniques used.	~	>	~	>		1
Assignments	Homework and Projects	~	~	~	~		

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.			Weighting	Remarks	
	1	2	3	4		
Continuous Assessment: 100%						
Coursework	~	<	>		30%	Bi-weekly assignments
Oral Presentation	~	~	>	>	30%	Oral presentation on the group project studying a specific nanoscience phenomenon
Final Report	~	~	>	>	40%	Final Report on the group project
					100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Coursework	 Capacity for using physics knowledge and theory to solve Problems. Demonstrate correct understanding of key concepts. 	Student completes all assignments, and demonstrates excellent understanding of the scientific principles governing the behaviour at the nanoscale.	Student completes at least 80% of assignments, and demonstrates understanding of the scientific principles governing the	Student completes at least 60% of assignments, and shows some of the scientific principles governing the behaviour at the	Student completes at least 50% of assignments, but can only demonstrate brief understanding of the scientific principles governing the	Student completes less than 50% of assignments. Or, fails to accurately describe the scientific principles governing the behaviour at the
			behaviour at the nanoscale.	nanoscale.	behaviour at the nanoscale.	nanoscale.
2. Oral Presentation	 Demonstrate correct understanding of key concepts. Expand on learned concepts via self-learning. 	Student can thoroughly identify and describe how the principles are applied to science and technology. Student's work shows strong evidence of original thinking, as well as ability to utilize information sources other than taught material. Student is able to communicate ideas effectively via text and oral presentation.	Student can identify and describe how the principles are applied to science and technology. Student's work shows evidence of original thinking, as well as ability to utilize information sources other than taught material. Student is generally able to communicate ideas via text and oral presentation.	Student provides simple but accurate evaluations of how the principles are applied to science and technology. Student's work shows some evidence of original thinking, as minimal as ability to utilize information sources other than taught material. Student is able to communicate ideas via text and oral presentation.	Student can provide only brief descriptions how the principles are applied to science and technology. Student's work shows little evidence of original thinking, and no use of information sources other than taught material. Student is able to poorly, but accurately to communicate ideas via text and oral presentation	Student fails to demonstrate how the principles are applied to science and technology. Student's work shows evidence of plagiarism. Student fails to complete the assignment.
3. Final Report	 Demonstrate correct understanding of key concepts. Expand on learned concepts via self-learning 	Student can thoroughly identify and describe how the principles are applied to science and technology	Student can identify and describe how the principles are applied to science and technology. Student's work	Student provides simple but accurate evaluations of how the principles are applied to science and technology	Student can provide only brief descriptions how the principles are applied to science and technology	Student fails to demonstrate how the principles are applied to science and technology. Student's work

Student's work	shows evidence of	Student's work	Student's work	shows evidence of
shows strong	original thinking, as	shows some	shows little evidence	plagiarism. Student
evidence of original	well as ability to	evidence of original	of original thinking,	fails to complete the
thinking, as well as	utilize information	thinking, as minimal	and no use of	assignment.
ability to utilize	sources other than	as ability to utilize	information sources	-
information sources	taught material.	information sources	other than taught	
other than taught	Student is generally	other than taught	material. Student is	
material. Student is	able to communicate	material. Student is	able to poorly, but	
able to communicate	ideas via text and	able to communicate	accurately to	
ideas effectively via	oral presentation.	ideas via text and	communicate ideas	
text and oral		oral presentation.	via text and oral	
presentation.			presentation	

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Coursework	1. Capacity for using physics	Student completes all	Student completes at least	Student completes at least	Student completes less than
	knowledge and theory to solve	assignments, and	80% of assignments, and	50% of assignments, but	50% of assignments. Or, fails
	Problems.	demonstrates excellent	demonstrates	can only demonstrate brief	to accurately describe the
	2. Demonstrate correct	understanding of the	understanding of the	understanding of the	scientific principles governing
	understanding of key	scientific principles	scientific principles	scientific principles	the behaviour at the nanoscale.
	concepts.	governing the behaviour at	governing the behaviour	governing the behaviour at	
		the nanoscale.	at the nanoscale.	the nanoscale.	
2. Oral	1. Demonstrate correct	Student can thoroughly	Student can identify	Student can provide	Student fails to
Presentation	understanding of key	identify and describe how	and describe how	only brief	demonstrate how the
	concepts.	the principles are applied to	the principles are	descriptions how the	principles are
	2. Expand on learned concepts	science and technology.	applied to science	principles are	applied to science
	via self-learning.	Student's work shows strong	and technology.	applied to science	and technology.
		evidence of original	Student's work	and technology.	Student's work
		thinking, as well as	shows evidence of	Student's work	shows evidence of
		ability to utilize	original thinking, as	shows little evidence	plagiarism. Student
		information sources	well as ability to	of original thinking,	fails to complete the
		other than taught	utilize information	and no use of	assignment.
		material. Student is	sources other than	information sources	
		able to communicate	taught material.	other than taught	
		ideas effectively via	Student is generally	material. Student is	
		text and oral	able to communicate	able to poorly, but	
		presentation.	ideas via text and	accurately to	
			oral presentation	communicate ideas	
				via text and oral	
				presentation.	

3. Final Report	1. Demonstrate correct	Student can thoroughly	Student can identify	Student can provide	Student fails to
_	understanding of key	identify and describe how	and describe how	only brief	demonstrate how the
	concepts.	the principles are applied to	the principles are	descriptions how the	principles are
	2. Expand on learned concepts	science and technology.	applied to science	principles are	applied to science
	via self-learning.	Student's work shows strong	and technology.	applied to science	and technology.
		evidence of original	Student's work	and technology.	Student's work
		thinking, as well as	shows evidence of	Student's work	shows evidence of
		ability to utilize	original thinking, as	shows little evidence	plagiarism. Student
		information sources	well as ability to	of original thinking,	fails to complete the
		other than taught	utilize information	and no use of	assignment.
		material. Student is	sources other than	information sources	
		able to communicate	taught material.	other than taught	
		ideas effectively via	Student is generally	material. Student is	
		text and oral	able to communicate	able to poorly, but	
		presentation.	ideas via text and	accurately to	
			oral presentation	communicate ideas	
				via text and oral	
				presentation.	

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Physical properties of nanomaterials: electrons in nanostructures, photons in nanostructures, electronic transport in mesoscopic devices.
- Introduction to the quantum Hall effects.
- Major classes of nanomaterials: quantum dots, nano-wires/nano-tubes, thin films and atomically-thin materials
- Synthesis of nanomaterials: thin film fabrication (thermal evaporation, e-beam evaporation, pulsed-laser deposition, molecular-beam epitaxy, sputtering), bottom-up fabrication (epitaxy, CVD, self-assembly), electron-beam lithography
- Characterization of nanomaterials: electron microscopy, atomic force microscopy, spectroscopy (Raman), crystallography
- Application areas: electronics, quantum computing, energy applications, nano-biology

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Edward L. Wolf, Nanophysics and Nanotechnology: An Introduction to Modern Concepts in
	Nanoscience, Wiley-VCH, 2nd ed. (2006).
2.	David K. Ferry, Transport in nanostructures, Cambridge University Press, 2nd ed. (2009).

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	S. M. Lindsay, Introduction to Nanoscience.
2.	C. Binns, Introduction to Nanoscience and Nanotechnology.
3.	Supriyo Datta, Electronic Transport in Mesoscopic Systems.