City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester A 2024/25

Part I Course Overview	v
Course Title:	Advanced Quantum Mechanics
Course Code:	PHY6251
Course Duration:	1 semester
Credit Units:	3 credits
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	AP3251/PHY3251 Quantum Physics or equivalent
Precursors: (Course Code and Title)	AP1203/PHY1203 General Physics III or equivalent
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	PHY8251 Advanced Quantum Mechanics

Part II Course Details

1. Abstract

This course aims to equip graduate students with advanced knowledge of quantum mechanics necessary to conduct research and understand literature. It will consist of four different parts: (i) The theory of angular momentum; (ii) Symmetries in quantum mechanics; (iii) Perturbation theory in quantum mechanics; (iv) Introduction to modern many-body theory. This course will mainly focus on the applications of quantum mechanics in condensed matter physics and materials science. In particular, this course will expose the students to some of the latest developments in topological phases of matter, including the physics of topological insulators and topological superconductors.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	ery-en	riched
		(if	curricu	ılum re	lated
		applicable)	learnir	ng outco	omes
			(please	e tick	where
			approp	oriate)	
			A1	A2	A3
1.	Recognize and use appropriately important technical terms and definitions		~		
2.	Use appropriate mathematical notations and apply in concise form the laws of quantum mechanics to the study of modern physics problems		~	~	
3.	Apply the laws of quantum mechanics to the study of modern physics problems		~	~	~
4.	Solve real and hypothetical problems in quantum physics by identifying the underlying physics and analysing the problem		~	~	~
		100%		•	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs) (LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description	CIL	CILO No.		Hours/week (if		
		1	2	3	4		applicable)
Lecture	Explain key concepts and theory of topics of the course	~	~	*			2 hrs/wk
Tutorial	Explain how some problems are solved and the techniques used explain some concepts	>	*	~	~		1 hr/wk

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.			Weighting	Remarks	
	1	2	3	4		
Continuous Assessment: 60%						
Homework, Quizzes etc.	>	~	\	<	60%	
Examination^: 40% (duration: 2	/	~	>	/	40%	
hours)	•		,			
					100%	

[^] For a student to pass the course, at least 20% of the maximum mark for the examination must be obtained.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignment	1. Capacity for using physics knowledge and theory to solve problems	Will exhibit a high level of competence in	Will exhibit a good level of competence in	Will exhibit a basic level of competence in	Will exhibit some deficiencies in understanding,	Will exhibit lack of competence in understanding,
	2. Demonstrate correct understanding of key concepts.	understanding, explaining, and integrating the knowledge in written format	understanding, explaining, and integrating the knowledge in written format	understanding, explaining, and integrating the knowledge in written format	explaining, and integrating the knowledge in written format	explaining, and integrating the knowledge in written format
2. Examination	1. Capacity for using physics knowledge and theory to solve problems 2. Demonstrate correct understanding of key concepts and physics theory.	Will exhibit a high level of competence in understanding, explaining, and integrating the knowledge in written format	Will exhibit a good level of competence in understanding, explaining, and integrating the knowledge in written format	Will exhibit a basic level of competence in understanding, explaining, and integrating the knowledge in written format	Will exhibit some deficiencies in understanding about experimental methods and the interpretation of results	Will exhibit lack of competence in understanding, explaining, and integrating the knowledge in written format

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-,C+,C)	(F)
1. Assignment	1. Capacity for using physics	Will exhibit a high	Will exhibit a	Will exhibit some	Will exhibit lack
	knowledge and theory to solve	level of	good level of	deficiencies in	of competence in
	problems	competence in	competence in	understanding,	understanding,
	2. Demonstrate correct	understanding,	understanding,	explaining, and	explaining, and
	understanding of key concepts.	explaining, and	explaining, and	integrating the	integrating the
		integrating the	integrating the	knowledge in	knowledge in
		knowledge in	knowledge in	written format	written format
		written format	written format		
2. Examination	1. Capacity for using physics	Will exhibit a high	Will exhibit a	Will exhibit some	Will exhibit lack
	knowledge and theory to solve	level of	good level of	deficiencies in	of competence in
	problems	competence in	competence in	understanding	understanding,
	2. Demonstrate correct	understanding,	understanding,	about	explaining, and
	understanding of key concepts	explaining, and	explaining, and	experimental	integrating the
	and physics theory.	integrating the	integrating the	methods and the	knowledge in
		knowledge in	knowledge in	interpretation of	written format
		written format	written format	results	

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Theory of Angular Momentum

Symmetry in Quantum Mechanics

Basic Group Theory

Schrödinger, Heisenberg and the interaction picture

Perturbation theory

Identical particles and spins

Second quantization

Introduction to modern many-body physics

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

- 1. J. J. Sakurai, Modern Quantum Mechanics (Second Edition) (Cambridge University Press, 2017)
- 2. David J. Griffiths, Introduction to Quantum Mechanics, (Cambridge University Press, 2018)

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	R. Shankar, Principles of Quantum Mechanics (Plenum Press, 2011)
2.	A. Zee, Group Theory in a Nutshell for Physicists, Princeton University Press (2016).
3.	A. Altland and B. Simons, Condensed Matter Field Theory, Cambridge University Press, 2nd edition (2010).
4.	Gerald D. Mahan, Many-Particle Physics (Physics of Solids and Liquids) 3rd ed. (Springer, 2000)
5.	B. Andrei Bernevig, Topological Insulators and Topological Superconductors, Princeton University Press (2013).