City University of Hong Kong Course Syllabus

offered by Department of Infectious Diseases and Public Health with effect from Semester A 2024/25

Part I Course Overv	view
Course Title:	Computational Biology, Experimental Design and Data Science
Course Code:	PH8001
Course Duration:	1 semester
Credit Units:	3 credits
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to make the postgraduate students a) equipped with the fundamental knowledge in computational biology and data science; b) prepared with practical skills and appropriate logic to analyze molecular or numerical data, including data processing, visualizing, interpreting, and hypothesizing; and c) capable of designing biomedical/veterinary projects/experiments rationally. Python will be the main programming language used in the practical sessions.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting	curricu	ery-eni lum rel	lated
			A1	A2	A3
1.	Explain and apply the concepts, logic and algorithms underlying the commonly used bioinformatics tools	10%	✓	✓	
2.	Attain the ability of performing data mining for the -omics data using proper tools/parameters under a Linux environment	40%	√	√	~
3.	Design a biomedical/biological experiment regarding statistical and biological factors	15%	√	√	√
4.	Perform explanatory data analysis with Python	15%	✓	✓	✓
5.	Apply supervised machine learning models to biological data for regression or classification	20%	√	√	√
		100%		•	•

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

LTA	Brief Description		LO N	o.	Hours/week			
		1	2	3	4	5		
Lectures	Students will engage in interactive lectures to understand the fundamental philosophy/algorithms and apply appropriate tools for -omics data mining	√	√	√	√	✓		
Hands-on practical tasks	Students will perform problem-based practices to 1) strengthen the understanding of the principles, algorithms, or philosophy underlying the models/tools; and 2) apply bioinformatics or data mining tools/models on biomedical/veterinary problems and interpret the results	✓	✓	√	√	√		
Take-home assignments and reports	Students will complete project-based assignments to consolidate the understanding of bioinformatics or data mining tools/models and proficiency in performing the analyses		✓	✓	✓	✓		Out of classroom
Q&A sessions	Students will participate in Q&A sessions to 1) clarify concepts or correct the misunderstanding of the principles, algorithms or philosophy underlying the models/tools; 2) expand the scope of knowledge in biomedical data mining; 3) apply methods/tools learned to the real-world problems.	√	√	√	√	√		

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities		LO N	o.			Weighting	Remarks	
	1	2	3	4	5			
Continuous Assessment: 100%								
Classroom assessment		√	√			30%	Formative assessment will be carried out to evaluate students' comprehension and improve the learning outcomes (aligns with ILOs 1, 2, 3, 4 and 5).	
Assignments	V	✓	✓	✓	✓	70%	These tasks are designed to evaluate the ability of assessing pros and cons of different tools/models and the ability of applying them to realistic biomedical or veterinary problems (aligns with ILOs 2, 3, 4 and 5).	

100%

5. Assessment Rubrics

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Classroom assessment (30%)	Students will apply their competence in the content of both the theoretical and practical components.		Significant	Moderate	Basic	Not reaching basic levels
2. Assignments (70%)	Students will appraise their competence in the key concepts and algorithms of commonly used bioinformatics tools, construct biological/veterinary experiments based on the principles taught, and utilize the techniques/tools learned to solve specific biological problems.	High	Significant	Moderate	Basic	Not reaching basic levels

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Classroom assessment	The comprehension of the contents in both the theoretical and practical parts	High	Significant	Basic	Not even reaching marginal levels
2. Assignments	1) The comprehension of the key concepts and algorithms in the commonly used bioinformatics tools; ability to design a biological/veterinary experiment based on the principles taught in this course; 2) the ability to solve some specific biological		Significant	Basic	Not even reaching marginal levels

problems using the techniques/		
tools learned/ recommended in		
this course.		

Part III Other Information

1. Keyword Syllabus

Bioinformatics, computational biology, sequence analysis, -omics data mining, bioinformatics software, Linux operation, Python programming, experimental design, data visualization, multivariate analysis, supervised machine learning, unsupervised machine learning, exploratory data analysis, predictive modeling, causal inference

2. Reading List

2.1 Compulsory Readings

1.	Biological sequence analysis, R. Durbin, S.Eddy, A. Krogh, G.Mitchison,
	https://pdfs.semanticscholar.org/2ed5/d6b35f8971fb9d7434a2683922c3bfcc058e.pdf
2.	Python Data Science Handbook, Jake VanderPlas,
	https://github.com/jakevdp/PythonDataScienceHandbook

2.2 Additional Readings

1.	Deep Learning, Yoshua Bengio, MIT Press, ISBN10 0262035618
2.	The Book of Why: The New Science of Cause and Effect, Judea Pearl and Dana Mackenzie,
	ISBN-10: 046509760X
3.	How to Create a Mind: The Secret of Human Thought Revealed, Ray Kurzweil, Penguin
	Books; 7/28/13 edition, ISBN-10: 9780143124047