City University of Hong Kong Course Syllabus

offered by Department of Materials Science and Engineering with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Corrosion and Surface Engineering
Course Code:	MSE6303
Course Duration:	One semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

1. Abstract

Corrosion is a natural process by which a material degrades due to chemical interactions with the environment. Every year, corrosion of metallic materials leads to huge economic losses and risks to personnel in our daily life. This course aims to deliver fundamental knowledge of corrosion behavior of metallic materials (both in kinetic and thermodynamic aspects) to students. Apart from the corrosion of metallic materials, corrosion (degradation) of polymeric materials will also be introduced. Through a detailed understanding of the corrosion behaviour of various materials, a series of surface engineering techniques against corrosion, such as coating, inhibitors, passivators, etc., will be explored and discussed.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discov curricu learnin (please approp	riched lated omes where	
			Al	A2	A3
1.	Describe the definition of corrosion and explain corrosion mechanisms of metals and polymeric materials; describe various types of corrosion and their impacts in our daily life.		V	\checkmark	
2.	Explain the thermodynamic and kinetic aspects in corrosion of metals and differentiate two aspects in the corrosion process of metals.			\checkmark	\checkmark
3.	Explain the advantages and limitations of different types of protection methods, such as passivation, inhibitors, coating, etc., and describe the proper protection methods against corrosion in different applications.			V	\checkmark
4.	Apply surface engineering techniques for the protection of metals against corrosion.				\checkmark
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Learning and Teaching Activities (LTAs) (LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description		O No).	Hours/week		
		1	2	3	4		(if applicable)
Lecture	Students will engage in lectures to						20 hrs
	learn different types of corrosion,						
	understand the kinetic and						
	thermodynamic aspects in						
	corrosion of metallic materials, and						
	study various types of protection						
	methods.						
Laboratory	Students will perform experiments						3 hrs
	related to surface engineering of						
	metals.						
Tutorial	Students will participate in tutorial						10 hrs
	activities to discuss and solidify						
	their understanding on lecture						
	content.						
Group project	Students will participate in groups						6 hrs
	to identify corrosion in our daily life						
	and identify the proper protection						
	methods against corrosion.						

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment	CILO No.				Weighting	Remarks	
Tasks/Activities		2	3	4			
Continuous Assessment: 50 %	Continuous Assessment: 50 %						
Course assignments						10%	
Laboratory report						10%	
Group project						30%	
Examination (duration: 2						50%	
hours)							
						100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignments	Understanding fundamentals of electrochemistry, corrosion, materials selection and coatings for corrosion protection	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Laboratory Report	Having the ability to perform experiments and analyse the data.	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Group Project	Identifying corrosion in our daily life and discussing the proper protection methods against corrosion.	High	Significant	Moderate	Basic	Not even reaching marginal levels
4. Final Examination	Having the ability to compare and contrast various corrosion mechanisms and the capability of selecting materials against corrosion	High	Significant	Moderate	Basic	Not even reaching marginal levels

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-C+, C)	(F)
1. Assignments	Understanding fundamentals of	High	Moderate	Basic	Not even reaching marginal levels
	electrochemistry, corrosion, materials				
	selection and coatings for corrosion protection				
2. Laboratory Report	Having the ability to perform experiments and	High	Moderate	Basic	Not even reaching marginal levels
	analyse the data.				
3. Group Project	Identifying corrosion in our daily life and	High	Moderate	Basic	Not even reaching marginal levels
	discussing the proper protection methods				
	against corrosion.				
4. Final Examination	Having the ability to compare and contrast	High	Moderate	Basic	Not even reaching marginal levels
	various corrosion mechanisms and the				
	capability of selecting materials against				
	corrosion				

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

- Electrochemical mechanism
- Thermodynamics: Nernst equation, Pourbaix diagram
- Kinetics: Polarizations (Evans diagram), Tafel plot
- Different types of corrosion
- High-temperature corrosions, Ellingham diagram
- Anodic and cathodic protection
- Inorganic and organic coating, inhibitors and passivators
- Thermoplastic and thermoset polymers
- Corrosion of polymeric materials

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Corrosion Science and Engineering, by Pietro Pedeferri, Springer Cham (2018)
2.	Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering (4 th edition), by R. Winston Revie, Herbert H. Uhlig, John Wiley & Sons, Inc. (2008)

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

Hidemitsu Hojo, Ken Tsuda*, Masatoshi Kubouchi* and Dong-Seop Kim, Corrosion of Plastics and Composites in Chemical Environments. *Metals and materials* **1998**, *4*, 1191.