City University of Hong Kong Course Syllabus

offered by Department of Management Sciences with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Predictive Modeling in Marketing
Course Code:	MS6221
Course Duration:	One semester
Credit Units:	3
Level:	Рб
Medium of	
Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	MS5218 Applied Linear Statistical Models
Precursors:	
(Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	MS6218 Statistical Modelling in Marketing Engineering
Exclusive Courses : (Course Code and Title)	Nil

Part II Course Details

1. Abstract

The goal of this class is to provide a comprehensive overview of modern data-driven marketing techniques. We will explore key areas of marketing that rely on data-driven decisions, including targeted promotions and advertisements, churn management, recommender systems, pricing, and demand prediction. The course will emphasize applied predictive modeling in Python and the use of machine learning tools in the data science industry. Prerequisites include one course in probability and statistics, and one course in regression analysis. Students should expect to dedicate at least five hours of work following each lecture.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discov curricu learnin (please approp	ery-enr lum rel g outco tick riate)	riched ated omes where
			Al	A2	A3
1.	Enhance proficiency in Python programming for data analysis.	20%	~	~	
2.	Gain experience in analyzing real marketing data using statistical and machine learning models.	40%		✓	
3.	Learn how to frame marketing decision problems (such as pricing, promotion, advertising, and customer relationship management) as data analysis tasks and make informed decisions based on statistical and machine learning model results.	40%		*	~
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

3. Learning and Teaching Activities (LTAs)

(LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description	CILO No.					Hours/week	
	_	1	2	3				(if applicable)
Classroom Lectures	Students will engage in a structured schedule of regular lectures and demonstrations designed to enhance their understanding of the course material. Through active participation and interaction,	~	~	~				

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	students will have the opportunity to deepen their knowledge and grasp the intricacies of the content presented during these sessions.					
Computer Lab Tutorials	Students will work on a variety of tasks, ranging from basic syntax exercises to more advanced coding challenges during these Python programming sessions.	~	~			
Group Assignment	Students will team up and collaborate on coding projects to tackle coding challenges collectively and enhance their problem-solving skills.	~	~	~		

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks
	1	2	3			
Continuous Assessment: <u>100</u> %						
Assignment	\checkmark	\checkmark	\checkmark		40%	
In-Class Midterm		\checkmark	\checkmark		30%	
Project	\checkmark	✓	\checkmark		30%	
Examination: <u>0</u> %						
					100%	

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Assignment	Answer simple questions related to concepts introduced in the class and perform data analysis using Python to solve real marketing problems.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. In-Class Midterm	The midterm test is designed to assess students' understanding of models and their ability to frame marketing problems within a data analysis framework.	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Project	Students are required to work with real business data, applying concepts and models learned in the class to analyze the data and make informed business decisions. Proficiency in Python programming is essential.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Assignment	Answer simple questions	High	Significant	Moderate	Fail to understand the
	related to concepts introduced				core concepts
	in the class and perform data				_
	analysis using Python to solve				
	real marketing problems.				
2. In-Class Midterm	The midterm test is designed to	High	Significant	Moderate	Fail to understand the
	assess students' understanding				core concepts
	of models and their ability to				_
	frame marketing problems				
	within a data analysis				
	framework.				
3. Project	Students are required to work	High	Significant	Moderate	Fail to understand the
	with real business data,				core concepts
	applying concepts and models				-
	learned in the class to analyze				
	the data and make informed				
	business decisions. Proficiency				
	in Python programming is				
	essential.				

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- 1. Introduction
 - Introduction to Data-Driven Marketing
 - Introduction to Python
 - Linear Regression in Python
- 2. Promotions and Advertisements
 - Modern Targeting Methods using Machine Learning
 - Recency-Frequency-Monetary (RFM) Analysis
 - Customer Lifetime Value and Retention (Churn Management)
 - Predictive Modeling and Customer Acquisition
 - Measuring the Effectiveness (A/B testing)
- 3. Recommender Systems
 - Quantitative Metrics for Evaluation
 - Content-based Filtering
 - Collaborative Filtering
- 4. Pricing and Demand Prediction
 - Demand and Price Elasticity
 - Price Structure and Segmentation
 - Forecasting Demand using Machine Learning

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of ebooks, e-journals available from the CityU Library.) Nil

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learning: with Applications in R. Springer, 2017.
	This is a good book about machine learning algorithms, examples are demonstrated in R.
2.	Müller, Andreas C., and Sarah Guido. Introduction to machine learning with Python: a guide
	for data scientists. " O'Reilly Media, Inc.", 2016.
	This is a good book about machine learning with Python.

3.	Rossi, Peter E., Greg M. Allenby, and Rob McCulloch. Bayesian statistics and marketing. John
	Wiley & Sons, 2012.
	This book covers some concepts of quant marketing and Bayesian statistics.