MNE6124: ADVANCED MICRO/NANO ROBOTICS

Effective Term

Semester B 2024/25

Part I Course Overview

Course Title

Advanced Micro/Nano Robotics

Subject Code

MNE - Mechanical Engineering

Course Number

6124

Academic Unit

Mechanical Engineering (MNE)

College/School

College of Engineering (EG)

Course Duration

One Semester

Credit Units

3

Level

P5, P6 - Postgraduate Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

Nil

Precursors

Nil

Equivalent Courses

Nil

Exclusive Courses

Nil

Part II Course Details

Abstract

Micro and nano robotics is an interdisciplinary field which involves microfabrication, robotics, medicine and materials science. This course will cover the basic principles in design, modelling fabrication, and control of miniature robot and

micro/nano-manipulation systems. In addition to basic background material, the course includes case studies of current micro/nano-systems, challenges and future trends, and potential applications. The course will focus on a team design project involving novel theoretical and/or experimental concepts for micro/nano-robotic systems with a team of students. Depending on the nature of the topic chosen, these projects can also involve review of literature, design of new micro/nano robots, simulation or experimental demonstrations.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Understand the unique challenges due to the scaling factor in micro/nano robotics and automation at micro/nano scales.		x	X	
2	Review the micro/nano robotic technologies and MEMS design principles to form a knowledge base for addressing the challenges at micro/nano scale.		x	Х	x
3	Apply suitable theories and fabrication techniques to achieve automated manipulation of micro/nano objects, (such as biological cells, micro/nano particles).			X	x
4	Solve practical problems within the emerging multidisciplinary areas (such as biomedical engineering, pharmaceutical applications) where extensive background knowledge and different perspectives of thinking are needed.			х	x

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Learning and Teaching Activities (LTAs)

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Take place in a classroom setting and consists of lectures and student group discussions.	1, 2, 3, 4	2 hours/week

2	Tutorial	Case presentation	1, 2, 3, 4	1 hour/week
		will be given to		
		trigger the sparkles of		
		thoughts in proposing		
		innovative solutions		
		for multidisciplinary		
		problems. In-classroom		
		quiz will be involved		
		to strengthen the		
		students' understanding		
		of micro/nano robotic		
		technologies.		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.		Remarks (e.g. Parameter for GenAI use)
1	Project Presentation and Result	1, 2, 3, 4	30	
2	Project Report	1, 2, 3, 4	20	

Continuous Assessment (%)

50

Examination (%)

50

Examination Duration (Hours)

2

Additional Information for ATs

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

Assessment Rubrics (AR)

Assessment Task

Examination (for students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter)

Criterion

Written exam at the end of the semester.

Excellent

(A+, A, A-) High

Good

(B+, B, B-) Significant

Fair

(C+, C, C-) Moderate

Marginal

(D) Basic

Failure

(F) Not even reaching marginal levels

Assessment Task

Project Presentation and Result (for students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter)

Criterion

Include 3 parts on oral, lab demo and written report.

Excellent

(A+, A, A-) High

Good

(B+, B, B-) Significant

Fair

(C+, C, C-) Moderate

Marginal

(D) Basic

Failure

(F) Not even reaching marginal levels

Assessment Task

Project Report (for students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter)

Criterion

Group reports but to include individual discussions

Excellent

(A+, A, A-) High

Good

(B+, B, B-) Significant

Fair

(C+, C, C-) Moderate

Marginal

(D) Basic

Failure

(F) Not even reaching marginal levels

Assessment Task

Examination (for students admitted from Semester A 2022/23 to Summer Term 2024)

Criterion

Written exam at the end of the semester.

Excellent

(A+, A, A-) High

Good

(B+, B) Significant

Marginal

(B-, C+, C) Moderate

Failure

(F) Not even reaching marginal levels

Assessment Task

Project Presentation and Result (for students admitted from Semester A 2022/23 to Summer Term 2024)

Criterion

Include 3 parts on oral, lab demo and written report.

Excellent

(A+, A, A-) High

Good

(B+, B) Significant

Marginal

(B-, C+, C) Moderate

Failure

(F) Not even reaching marginal levels

Assessment Task

Project Report (for students admitted from Semester A 2022/23 to Summer Term 2024)

Criterion

Group reports but to include individual discussions

Excellent

(A+, A, A-) High

Good

(B+, B) Significant

Marginal

(B-, C+, C) Moderate

Failure

(F) Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

MNE6124: Advanced Micro/Nano Robotics

Scaling of dimensions, actuation at micro/nano scales, microscopy imaging, electron microscopy, micro/nano fabrication, micro assembly, bio-microrobotics, bio-mimetic microrobots, nanorobotic manipulation, bio-MEMS, microrobotic manipulation.

Reading List

6

Compulsory Readings

	l'itle	
1	Vil	

Additional Readings

	Title
1	Micro-/Nanorobots, by Bradley J. Nelson, Lixin Dong, Fumihito Arai, Chapter 27 from Springer Handbook of Robotics, 2016 Ed.
2	Micro- and Nanomanipulation Tools, by Yu Sun and X.Y. Liu, Wiley-VCH, 2015.
3	Nanopositioning Technologies: Fundamentals and Applications by C.H. Ru, X.Y. Liu, and Yu Sun, Springer-New York, 2016.
4	Fabrication and Characterization in the Micro-Nano Range, by Lasagni, Fernando A., Lasagni, Andrés F. (2011 Eds.)
5	Foundations of MEMS, by Chang Liu, Pearson Education Asia, 2012.
6	Fundamentals of BioMEMS and Medical Microdevices by Steven Saliterman, 2005.