City University of Hong Kong Course Syllabus

offered by Department of Economics and Finance with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Financial Computing
Course Code:	EF5213
Course Duration:	1 semester
Course Duration:	1 semester
Credit Units:	3
Level:	P5
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites:	
(Course Code and Title)	Nil
Precursors:	EF5050 Derivatives and Risk Management EF5210 Option Pricing
(Course Code and Title)	EF5250 Stochastics & Calculus for Finance
Equivalent Courses:	
(Course Code and Title)	Nil
Exclusive Courses : <i>(Course Code and Title)</i>	Nil
(Course Coue und Ille)	1111

Part II Course Details

1. Abstract

This course aims to enable students to apply integrated spreadsheet programming skills to solve real-life financial problems, to equip students with the capability of performing numerical computations in financial engineering, to provide students with the practical knowledge of modern financial models.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	curricu learnin (please approp	í í í	lated omes where
1.	Apply integrated programming skills to design effective	-	$\frac{AI}{}$	$\frac{A2}{}$	<i>A3</i>
	solution for real-life financial problems.				
2.	Discuss the key elements of numerical computation in	-			
	financial engineering, and develop flexible and robust				
	solutions with good programming practices.				
3.	Apply the numerical techniques in financial engineering to	-			
	design complex algorithms and solutions for modern				
	financial models.				
4.	Apply the practical knowledge in financial modelling to	-			
	develop integrated numerical solutions for real market				
	products.				
	·	-		•	•

A1: Attitude

A2:

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

Ability Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Learning and Teaching Activities (LTAs) (LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description		CILO No.			Hours/week(if
		1	2	3	4	applicable)
Lectures, class	Students will engage in formal	\checkmark	\checkmark	\checkmark	\checkmark	3
discussions, and computer	lectures that will explain key					
laboratories	concepts and theories of modern					
	financial models and numerical					
	computation in lectures.					
	Deliver key numerical techniques and					
	practical knowledge for computer					
	implementation in laboratories.					

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks
	1	2	3	4		
Continuous Assessment: 100 %						
Assignments and laboratory					100 %	-
work			•			
Examination: <u>0</u> % (duration:		, if ap	plicabl	e)		
					100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
Assignments and laboratory work	Demonstrates understanding of the financial models. Ability to deliver effective, efficient, flexible, and robust computer solutions with good programming practices.	High	Significant	Moderate	Basic	Not reaching marginal level

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
Assignments and laboratory work	Demonstrates understanding of the financial models. Ability to deliver effective, efficient, flexible, and robust computer solutions with good programming practices.	High	Significant	Basic	Not reaching marginal level

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Numerical and Statistical Computations GARCH(1,1) Model Finite Difference Method and Crank-Nicholson Scheme Portfolio Mean-Variance Optimization and Markowitz Algorithm Multi-variable Newton-Raphson Procedure Yield Curve Construction using Cubic Spline Binomial Tree Pricing of Exotic Options Black-Derman-Toy Model for Interest Rate Derivatives Monte-Carlo Option Pricings Least-Square Monte-Carlo Pricings of American Options

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Humphrey Tung, Donny Lai, and Michael Wong with Stephen Ng, Professional Financial
	Computing Using Excel & VBA, John Wiley & Sons, Singapore, 2010, ISBN 978-0-470-
	82439-9.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)