City University of Hong Kong Course Syllabus

offered by Department of Electrical Engineering with effect from Semester <u>A in 2024/2025</u>

v
Nanotechnology for Devices and Microsystems
EE6615
One Semester (13 weeks)
3
P6
English
English
Nil
Nil
Nil
Nil

Part II Course Details

1. Abstract

The aim of the course is to provide students with theoretical knowledge and analytical skills necessary for an in-depth understanding of the chemistry and physics of nanofabrication technologies used in microelectronics and microsystems. Highlighted topics include patterning, interconnects, and packaging technology for nanostructures, devices, and microsystems.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if		very-en	
		`			
		applicable)		ng outco	
			· · ·	e tick	where
			approp	oriate)	
			A1	A2	A3
1.	Explain the principles of nanofabrication technology.		√	√	
2.	Apply nanotechnology to nanostructures, devices and microsystems fabrication.		√	√	
3.	Design nanotechnology for specific nanostructures, devices and microsystems.		√	√	√
4.	Recognize limits of nanotechnology for different applications.		√	√	
5.	Perform independent studies to identify future		√	√	√
	developments of nanotechnology in nanostructures,				
	nanodevices, and microsystems.				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

(LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description	CIL	CILO No.			Hours/week (if	
	_	1	2	3	4	5	applicable)
Lecture	Knowledge of the general concepts in nanotechnology and its applications.	\	✓	\	\		3 hrs/wk for 8 weeks
Laboratory	Hands on experience in cleanroom to practice nanotechnology.		√	√	√		3 hrs/wk for 3 weeks
Project	Research selected nanotechnology topics and provide independent evaluations.	√	√	√	\	√	3 hrs/wk for 2 weeks

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CII	CILO No.				Weighting	Remarks	
	1	2	3	4	5			
Continuous Assessment: <u>50%</u>								
Tests (min.: 1)	✓	✓	✓	✓			25%	
#Assignments (min.: 1)	✓	✓	✓	✓	✓		15%	
Lab Exercises/Reports		✓	✓	✓			10%	
Examination: 50% (duration: 2hrs , if applicable)								
Examination	✓	✓	✓	✓			50%	
	·					<u> </u>	100%	

Remark:

To pass the course, students are required to achieve at least 30% in course work and 30% in the examination. Also, 100% laboratory attendance rate must be obtained.

may include homework, tutorial exercise, project/mini-project, presentation

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Examination	Achievements in CILOs	High	Significant	Moderate	Basic	Not even reaching marginal level
2. Coursework	Achievements in CILOs	High	Significant	Moderate	Basic	Not even reaching marginal level

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B,)	Marginal (B-, C+, C)	Failure (F)
1. Examination	Achievements in CILOs	High	Medium	Low	Not even reaching marginal level
2. Coursework	Achievements in CILOs	High	Medium	Low	Not even reaching marginal level

6. Constructive Alignment with Programme Outcomes

PILO	How the course contribute to the specific PILO(s)
1, 2, 3, 4	Students are required to apply the fundamental theoretical knowledge and analytical skills for an in-depth understanding of nanotechnology for nanostructures, nanodevices and microsystems. The students have many opportunities to formulate and solve problems using the learnt knowledge and skills.
2, 3, 4, 5	Students are required to complete an independent research study on new developments of nanotechnology in nanodevices and microsystems.
6	Students are required to give an oral presentation of their independent research studies.

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

- Overview of nanotechnology
- Clean rooms facilities for nanofabrication
- Lithography technology for high-resolution patterning and mass production
- Dry and wet etching technologies for nanostructures, nanodevices, and microsystems
- Introduction of dopants to control conductivity and form shallow junctions
- Electrical contact formation and multiple level interconnects
- Nanophotonic devices for optical communications and biosensing applications
- Micro-Electro-Mechanical Systems (MEMS) and their applications
- Nanoimprint technology for three dimensional nanostructures and nanodevices
- Packaging technology for nanodevices and microsystems

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Course notes provided by the instructor
----	---

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Silicon VLSI Technology - Fundamentals, Practice and Modeling, Plummer, Deal, and Griffin (Prentice Hall, 2000).
2.	Fabrication Engineering at the Micro- and Nanoscale, Stephen A. Campbell (Oxford University Press, 2008).
3.	Fundamentals of Microfabrication and Nanotechnology, Marc J. Madou, (CRC Press, 3rd Edition, 2011).
4.	Nanotechnology and Functional Materials for Engineers, Yaser Dahman, Amsterdam; Cambridge, MA: Elsevier, 2017.
5.	Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends, edited by Abdel Salam Hamdy Makhlouf, Ahmed Barhoum, Amsterdam; Cambridge, MA: Elsevier, 2018.
6.	Introduction to Nanotechnology, Massimo F Bertino, Massimo F., New Jersey; Hong Kong: World Scientific, 2022.