City University of Hong Kong Course Syllabus

offered by Department of Computer Science with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Guided Study in Artificial Intelligence				
Course Code:	CS6535				
Course Duration:	One semester				
Credit Units [.]	3 credits				
Level	P6				
	10				
Medium of	Enalish				
Instruction:					
Medium of					
Assessment:	English				
Prerequisites:					
(Course Code and Title)	Nil				
Precursors:					
(Course Code and Title)	Nil				
Equivalent Courses:					
(Course Code and Title)	Nil				
	CS6534 Guided Study,				
Exclusive Courses:	CS6536 Guided Study in Data Science,				
(Course Code and Title)	CS6537 Guided Study in Information Security				

Part II Course Details

1. Abstract

The aim of this course is to provide an opportunity to explore a research area of **artificial intelligence** in consultation with a member of the academic staff. The objectives are to develop in-depth knowledge of a chosen field of interest and to exercise the skill and techniques acquired in earlier courses to discover innovative approach to solving artificial intelligence related problems. The students will also have the opportunity to develop documentation and presentation skill in conveying the results of his/her work.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discov curricu learnin (please approp	ery-en lum rel g outco tick riate)	riched ated omes where
			A1	A2	A3
1.	Identify a challenging artificial intelligence related problem, analyze the problem in detail in the context of an extensive review of existing literature.		~		
2.	Propose innovative solutions, formulate a detailed design of the solutions and comparison of the proposed solution with existing approaches.			~	~
3.	Document and report the system design process, background study and expected performance of the solution.				~
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

(LTAs designed to facilitate students' achievement of the CILOs.)

Teaching pattern:

Suggested lecture/tutorial/laboratory mix: 8 hours individual consultation.

Each student is expected to solicit the support of an academic supervisor on a one to one basis for each project.

The role of the supervisor is to closely monitor the project progress with project meetings regularly, in order to give advice to the student, to establish criteria for assessment, and to advise on possible solutions and potential problems.

LTA	Brief Description	CILO No.			Hours/week
	_	1	2	3	(if applicable)
Project	Students will identify the problem for	\checkmark			
planning	investigation and draft a project plan with				
	appropriate milestones.				
Project	Students will analyze the problem identified		\checkmark		
proposal	and research on existing and/or related				
	solutions. Then, in consultation with their				
	supervisors, they will propose their own				
	designs and solutions.				
Project	Students will document and explain their			\checkmark	
documentation	work in regular progress reports and a final				
	report. At the end, they are required to				
	present their projects in the form of oral				
	presentation and demonstration.				

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities		CILO No.		Weighting	Remarks		
	1	2	3				
Continuous Assessment: 100%							
Project management and individual	\checkmark			20%	For assessment of technical merit,		
development of the student					report, and presentation, the project		
Technical merit of the proposed		\checkmark		50%	committee assigns two examiners,		
solution, including the degree of					including the supervisor. The		
innovation in the proposed design					Supervisor is required to give		
Standard of final documentation			~	20%	detailed grading reports on all		
Standard of oral presentation			✓	10%	aspects of assessment. The		
					Assessor will evaluate the CILOs 2		
					and 3 of the project. The Course		
					Leader will review all projects,		
					moderate consistency across a wide		
					range of projects, and, where		
					necessary, resolve discrepancies		
					between grading of the Assessor		
					and the Supervisor, drawing on the		
					expertise of domain experts as		
					needed.		
Examination: <u>0</u> %							

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Project planning	1.1 ABILITY to IDENTIFY problems for investigations.	High	Significant	Moderate	Basic	Not even
	1.2 ABILITY to PLAN a project schedule with appropriate					reaching
	milestones, and MAINTAIN the project schedule.					marginal
						levels
2. Project proposal	2.1 ABILITY to ANALYZE a problem.	High	Significant	Moderate	Basic	Not even
	2.2 ABILITY to EVALUATE, COMPARE, and	_	-			reaching
	CONTRAST existing solutions.					marginal
	2.3 ABILITY to DESIGN and INNOVATE new solutions.					levels
3. Project	3.1 ABILITY to DOCUMENT the progress of the project in	High	Significant	Moderate	Basic	Not even
documentation	interim reports.	_	-			reaching
	3.2 ABILITY to DOCUMENT the OUTCOMES of the					marginal
	project in a final report.					levels
	3.3 ABILITY to DEMONSTRATE project outcomes in an					
	oral presentation.					

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Project planning	1.1 ABILITY to IDENTIFY problems for investigations.	High	Significant	Moderate to	Not even
	1.2 ABILITY to PLAN a project schedule with appropriate milestones, and			Basic	reaching
	MAINTAIN the project schedule.				marginal
					levels
2. Project proposal	2.1 ABILITY to ANALYZE a problem.	High	Significant	Moderate to	Not even
	2.2 ABILITY to EVALUATE, COMPARE, and CONTRAST existing			Basic	reaching
	solutions.				marginal
	2.3 ABILITY to DESIGN and INNOVATE new solutions.				levels
3. Project	3.1 ABILITY to DOCUMENT the progress of the project in interim reports.	High	Significant	Moderate to	Not even
documentation	3.2 ABILITY to DOCUMENT the OUTCOMES of the project in a final			Basic	reaching
	report.				marginal
	3.3 ABILITY to DEMONSTRATE project outcomes in an oral presentation.				levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Typical topic areas include: Reinforcement learning, Uncertainty reasoning, Searching, Planning and acting, Logics, Knowledge representation and inference, Computer vision, Natural language processing, Robotics, AI computer game.

The project starts with a specification phase in which the student is to arrive at a set of problem statements and objectives. This is formalized in a project definition and study plan. During the course of the project, the student will be guided by a supervisor from the academic staff to produce the following reports: Project Definition, Survey of Related Work, Design/Analysis, Final Report (which may include any implementation and evaluation aspects).

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

N/A

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

N/A