City University of Hong Kong Course Syllabus

offered by Department of Computer Science with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Topics in Machine Learning
Course Code:	CS6487
Course Duration:	One semester
Credit Units:	3 credits
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites [.]	CS5487 Machine Learning: Principles and Practice or CS5489 Machine Learning: Algorithms and Applications or
(Course Code and Title)	CS5491 Artificial Intelligence
Prodursors	
(Course Code and Title)	Nil
Equivalant Courses	
(Course Code and Title)	Nil
Englusing Courses	
<i>Exclusive Courses:</i> (<i>Course Code and Title</i>)	Nil

Part II Course Details

1. Abstract

This course examines advanced concepts and recent developments in machine learning. The course will consist of a mix of lectures, to introduce advanced concepts, and student-led seminars, for discussing recent developments. At the end of the course, students will have working knowledge of as well as practical experience in advanced machine learning. This is a topics course and the course syllabus will be adjusted to fit the interests of the students.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discov curricu learnin (please	riched ated omes where	
			approp	riate)	
1.	Describe advanced machine learning algorithms and how they are derived.		AI	<u>A2</u> ✓	<u>A3</u>
2.	Apply advanced machine learning algorithms to solve real- world problems.				~
3.	Analyze and evaluate the effectiveness of advanced machine learning algorithms, and assess their relative merits.			~	
4.	Design new advanced machine learning algorithms to address algorithmic shortcomings and solve particular problems.				✓
5.	Document and report the derivation and evaluation of advanced machine learning through a written report and oral presentation.				✓
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

(LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description	CILO No.			No.	Hours/week (if	
		1	0	2	4	~	applicable)
Lecture	In the first 10 weeks of the course, students will engage in lectures about selected advanced machine learning algorithms, and the intuition and theory behind them.	$\frac{1}{\checkmark}$	2	3	4	5	2 hours
Seminar	In the last 3 weeks, students will present their topics of interest in the form of a seminar.	~				~	2 hours
Tutorial	Each week, students will work on problems during the tutorial sessions to gain better understanding of the lecture material.	~					1 hour
Assignment	Students will derive/design a machine learning algorithm, implement, and test it.		~	~			2 assignments
Course Project	Students will design a system based on advanced machine learning. Students will report their results in a course report.		<	<	~	~	

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks	
	1	2	3	4	5		
Continuous Assessment: 70%							
Student-led seminar	>				\checkmark	10%	
Assignment		✓	✓			30%	
Course Project [^]		✓	✓	✓	\checkmark	30%	
Examination [*] : <u>30</u> % (duration: 2 hours)							
						100%	

[^]For a student to pass the course, at least 30% of the maximum mark for the examination AND course project must be obtained.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
1. Student-led Seminar	 1.1 ABILITY to APPLY machine learning to small problems and INTERPRET the results. 1.2 ABILITY to COMPARE the accuracy and efficiency of machine learning algorithms. 	High	(B+, B, B-) Significant	Moderate	(D) Basic	(F) Not even reaching marginal levels
2. Assignments	 2.1 ABILITY to APPLY machine learning to real-world problems and INTERPRET the results. 2.2 ABILITY to EVALUATE, COMPARE, and CONTRAST different machine learning algorithms. 	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Course Project and Presentation	 3.1 ABILITY to APPLY machine learning to real-world problems and INTERPRET the results. 3.2 ABILITY to EVALUATE, COMPARE, and CONTRAST different machine learning algorithms. 3.3 ABILITY to REPORT about machine learning experiments. 	High	Significant	Moderate	Basic	Not even reaching marginal levels
4. Examination	 4.1 ABILITY to EXPLAIN machine learning algorithms, and INTERPRET results from machine learning algorithms. 4.2 ABILITY to EVALUATE, COMPARE, and CONTRAST different machine learning approaches. 4.3 ABILITY to DESIGN and DERIVE new machine learning algorithms. 	High	Significant	Moderate	Basic	Not even reaching marginal levels

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
1. Student-led Seminar	 1.1 ABILITY to APPLY machine learning to small problems and INTERPRET the results. 1.2 ABILITY to COMPARE the accuracy and efficiency of machine learning algorithms. 	High	Significant	Moderate to Basic	Not even reaching marginal levels
2. Assignments	 2.1 ABILITY to APPLY machine learning to real-world problems and INTERPRET the results. 2.2 ABILITY to EVALUATE, COMPARE, and CONTRAST different machine learning algorithms. 	High	Significant	Moderate to Basic	Not even reaching marginal levels
3. Course Project and Presentation	 3.1 ABILITY to APPLY machine learning to real-world problems and INTERPRET the results. 3.2 ABILITY to EVALUATE, COMPARE, and CONTRAST different machine learning algorithms. 3.3 ABILITY to REPORT about machine learning experiments. 	High	Significant	Moderate to Basic	Not even reaching marginal levels
4. Examination	 4.1 ABILITY to EXPLAIN machine learning algorithms, and INTERPRET results from machine learning algorithms. 4.2 ABILITY to EVALUATE, COMPARE, and CONTRAST different machine learning approaches. 4.3 ABILITY to DESIGN and DERIVE new machine learning algorithms. 	High	Significant	Moderate to Basic	Not even reaching marginal levels

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Topics will be adjusted according to student interests. Possible topics will include:

- Probabilistic models
 - Time-series models, learning and inference.
 - Probabilistic graphical models, belief propagation.
 - o Approximate inference methods, variational approximations, MCMC
 - o Conditional random fields
 - Bayesian hierarchical modelling
 - o Gaussian processes
- Deep learning
 - Neural networks, convolutional neural networks
 - Activation functions and sparsity
 - Backpropagation, stochastic gradient descent
 - Autoencoders and information bottleneck
 - Regularization and architecture design
 - Problems with deep learning
 - Variational auto-encoders
 - Generative adversarial networks
- Others
 - o Non-linear manifold embedding
 - \circ Random forests

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1. C.M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	T. Hastie, R. Tibshirani, and J. Friedman, "The Elements of Statistical Learning: Data Mining,
	Inference, and Prediction (2 nd Ed.)", Springer-Verlag, 2009.
2.	J. Pearl, "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
	(Representation and Reasoning)", Morgan Kaufmann Pub, 1998.
3.	I. Goodfellow, Y. Bengio, and A. Courville, "Deep Learning", MIT Press, 2016.
4.	Murphy, "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012
5.	Koller and Friedman, "Probabilistic Graphical Models: Principles and Techniques", The MIT
	Press, 2009