

City University of Hong Kong Course Syllabus

offered by Department of Biomedical Sciences with effect from Semester A 2024/2025

Part I Course Overv	view
Course Title:	Genomics and Bioinformatics
Course Code:	BMS8110
Course Duration:	One semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses:	Nil

Part II Course Details

1. Abstract

This course aims to introduce historical development, basic concepts, principles and tools of genomics and bioinformatics, with extensive case studies. The students will learn comprehensive functional genomics, evolutional biology, systems biology and cancer genomics in the context of cutting-edge technological development. The students will be trained to acquire various techniques and programming skills for computational and statistical analysis. It also aims to teach students important skills about how to communicate and collaborate in their future research projects. The assessment consists of literature reading, group presentation, programming and report writing. The students are expected to expand their knowledge and skills by intensive literature reading and practice within and after class.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs#	Weighting	Discovery- enriched curriculum related learning outcomes		
			Al	A2	A3
1.	Identify and explain basic concepts and principles in Genomics and Bioinformatics		✓	√	
2.	Combine and compare the major information of scientific literature			✓	
3.	Apply computational and statistical methods to analyse data		✓	✓	✓
4.	Write a report about a real-world case study using bioinformatic data analysis		✓	✓	✓
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

LTA	Brief Description	CILO	CILO No.		Hours/week	
		1	2	3	4	
Lectures	Attend lectures to understand the basic concepts and principles, and build skills to use bioinformatic tools to address questions in biomedical research.	✓	✓			2 hours/week (26 hours in total)
Programming	Identity tools and desgin appropriate			1		
Practice	approaches to analyse data in R.			•		
Report writing	Combine, compare and cite literature review and summarize results of data analysis for a real-world case study.				✓	
Tutorials	Read literature and participate in group discussion on Genomics and Bioinformatics followed by presentation.		✓			Tutorial 7hrs (7 sessions x 1hr)

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	C	CILO No.			Weighting	Remarks
	1	2	3	4		
Continuous Assessment: 100%						
Scientific presentation of selected topics in Bioinformatics	✓	✓			50%	
Assessment of programming			✓		30%	
Attendance of lecture and tutorial sessions			✓	✓	20%	
					100%	

Course Syllabus Jun 2024

5. Assessment Rubrics

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Presentation and discussion	Demonstrate the ability to apply what has been taught in lectures/tutorials in their oral presentation	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Programming	Demonstrate the ability to analyse data by programming in R	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Attendance of lecture and tutorial sessions	Demonstrate the ability to do extensive literature review, search for data, analyse data, interpret results, propose hypothesis and design follow-up experiments.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Presentation and	Demonstrate the ability to	High	Significant	Moderate	Not even reaching
discussion	apply what has been taught in				marginal levels
	lectures/tutorials in their oral				
	presentation				
2. Programming	Demonstrate the ability to	High	Significant	Moderate	Not even reaching
	analyse data by programming				marginal levels
	in R				

3. Attendance of	Demonstrate the ability to do	High	Significant	Moderate	Not even reaching
lecture and tutorial	extensive literature review,				marginal levels
sessions	search for data, analyse data,				
	interpret results, propose				
	hypothesis and design follow-				
	up experiments.				

Part III Other Information

1. Keyword Syllabus

Functional genomics; sequence alignment; phylogenetic trees; structural bioinformatics; gene perturbation screen; systems biology; network inference; cancer genomics

2. Reading List

2.1 Compulsory Readings

Nil

2.2 Additional Readings

1.	Introduction to Genomics, Oxford University Press; 2nd edition. ISBN-13: 978-0199564354, ISBN-10: 0199564353
2.	Introduction to Bioinformatics, Oxford University Press, 4th Edition.
	ISBN-13: 978-0199651566, ISBN-10: 0199651566
3.	Bioinformatics and Functional Genomics, Wiley-Blackwell, 3rd Edition.
	ISBN-13: 978-1118581780, ISBN-10: 1118581784
4.	R Cookbook, O'Reilly Media; 1st Edition.
	ISBN-13: 978-0596809157, ISBN-10: 0596809158