City University of Hong Kong Course Syllabus

offered by Department of Materials Science and Engineering with effect from Semester A 2021/22

Part I Course Overview

Course Title:	Thermodynamics of Materials
Course Code:	MSE8011
Course Duration:	One semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : <i>(Course Code and Title)</i>	Nil
Precursors : <i>(Course Code and Title)</i>	Nil
Equivalent Courses : <i>(Course Code and Title)</i>	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

The course aims to provide graduate students a solid foundation of thermodynamics of materials for them to embark on research in Materials Science and Engineering. The course will provide a comprehensive treatment of the thermodynamics of materials and their applications, including the laws of thermodynamics, state functions, statistical mechanics, single and multi-component systems, thermodynamics of phase diagram, multiphase and reacting systems and thermodynamic of interfaces and defects. Upon successful completion of the course, students are expected to be equipped with sufficient knowledge to analyse thermodynamic properties and processes, as well as to describe and to determine the equilibrium states/properties of materials for advanced studies. The course also weaves in selected elements of statistical thermodynamics related to macroscopic equilibrium phenomena.

No.	CILOs [#]	Weighting*	Discov	very-en	riched
		(if	curricu	lum re	lated
		applicable)	learnin	ig outco	omes
			(please	e tick	where
			appropriate)		
			A1	A2	A3
1.	Analyze and calculate thermodynamic material properties				
	and process variables using the laws of thermodynamics.				
2.	Understand and analyze the equilibrium criteria and			\checkmark	\checkmark
	equilibrium conditions of systems with different constraints.				
3.	Understand the basics of statistical mechanics and describe				
	the relations between microscopic and macroscopic				
	thermodynamic properties.				
4.	Explain and analyze thermodynamic properties in single and				
	multicomponent materials, and heterogeneous phase				
	diagrams based on the equilibrium criteria.				
5.	Describe and analyze defect thermodynamics and their				
	influences on material properties.				
	· • •	100%		•	•

2. Course Intended Learning Outcomes (CILOs)

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CILO No.			Hours/week		
		1	2	3	4	5	(if applicable)
Lecture/Tutorial	Explain and discuss the key concepts about the laws of thermodynamic, thermodynamic relationships, single component and multi-component phase equilibria as well as statistic thermodynamics theory, phase diagram and defects.	V	V	V	V	V	3

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.					Weighting*	Remarks
	1	2	3	4	5		
Continuous Assessment: 40 %							
Midterm	\checkmark					30 %	There will be one
							midterm test
Assignment						10 %	Take-home or in-class
							assignments
Examination:						60 %	
(duration: 2 hrs)							
						100%	

5. Assessment Rubrics

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Test	Able to derive thermodynamic property relations and solve quantitative problems, and demonstrate the understanding of basic principles	High	Significant	Moderate	Basic	Not even reaching the marginal level
2. Assignment	Able to derive thermodynamic property relations and solve quantitative problems, and demonstrate the understanding of basic principles	High	Significant	Moderate	Basic	Not even reaching the marginal level
3. Examination	Able to derive thermodynamic property relations and solve quantitative problems, and demonstrate the understanding of basic principles	High	Significant	Moderate	Basic	Not even reaching the marginal level

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

- The structure and laws of thermodynamics
- Thermodynamic variables and relationships
- Thermodynamic equilibrium criteria and equilibrium conditions
- Basics of statistical mechanics
- Single component systems
- Multicomponent system: solution and heterogeneous materials
- Thermodynamics of phase diagram, phase diagram
- Multicomponent, multiphase, reacting systems
- Capillary effects
- Defects in Crystals
- Thermodynamics under external fields
- Electrochemistry

2. Reading List

2.1 Compulsory Readings

1.	Lecture slides
2.	Tutorial problems and solutions

2.2 Additional Readings

1.	Robert T DeHoff, "Thermodynamics in Materials Science", New York, McGraw-Hill, 1993.
2.	Introduction to the Thermodynamics of Materials, David R Gaskell, Fifth Edition, Taylor &
	Francis, 2008
3.	Modern Thermodynamics: From Heat Engines to Dissipative Structures, Dilip Kondepudi and
	Ilya Prigogine, Wiley, 2002
4.	Yunus A Çengel, Michael A Boles, "Thermodynamics – An Engineering Approach", 6th ed. in
	SI units, McGraw-Hill, 2008.
5.	D. V. Ragone, Thermodynamics of Materials, Vols. 1 and 2, John Wiley and
	Sons, NY, 1995.