Selected Publications

  • Peng, R. & Lu, Z. (2024) Semiparametric Averaging of Nonlinear Marginal Logistic Regressions and Forecasting for Time Series Classification. Econometrics and Statistics, 31 (2024) 19–37.
    [ Link: https://doi.org/10.1016/j.ecosta.2021.11.001 ]
  • Yang, Y., Wang, Q., Wang, C., Buxbaum, J., & Ionita-Laza, I. (2024). KnockoffHybrid: A knockoff framework for hybrid analysis of trio and population designs in genome-wide association studies. American Journal of Human Genetics. Advance online publication.
    [ Link: https://doi.org/10.1016/j.ajhg.2024.05.003 ]
  • Jiao, S., Frostig, R., & Ombao, H. (2024). Filtrated Common Functional Principal Component Analysis of Multigroup Functional Data. The Annals of Applied Statistics, 18(2), 1160-1177.
    [ Link: https://doi.org/10.1214/23-AOAS1827 ]
  • Wang, Z., Zhang, F., Zheng, C., Hu, X., Cai, M., & Yang, C. (2024). MFAI: A Scalable Bayesian Matrix Factorization Approach to Leveraging Auxiliary Information. Journal of Computational and Graphical Statistics. Advance online publication.
    [ Link: https://doi.org/10.1080/10618600.2024.2319160 ]
  • Zhang, Q., Lu, Z., Liu, S., Yang, H. & Pan, J. (2024). An MA-MRR model for transaction-level analysis of high-frequency trading processes. Journal of Management Science and Engineering, 2024, 9(1), pp. 53–61.
    [ Link: https://doi.org/10.1016/j.jmse.2023.08.001 ]
  • Lu, Z., Ren, X. & Zhang, R. (2024). On Semiparametrically Dynamic Functional- Coefficient Autoregressive Spatio-Temporal Models with Irregular Location Wide Nonstationarity. Journal of the American Statistical Association, Volume 119, Issue 546, Pages 1032-1043.
    [ Link: https://doi.org/10.1080/01621459.2022.2161386 ]
  • Kiakojouri, A., Lu, Z., Mirring, P., Powrie, H. & Wang, L. (2024). A generalised intelligent bearing fault diagnosis model based on a two-stage approach. Machines, 12(1), 77.
    [ Link: https://doi.org/10.3390/machines12010077 ]
  • Peng, R. & Lu, Z. & Ge, F. (2024). On a Location-wide Semiparametric Analysis of Spatio-Temporal Dynamics of the COVID-19 Daily New Cases in the UK. Accepted for a chapter in the book Recent Advances in Econometrics and Statistics (“Festschrift in honor of Marc Hallin’s 75th birthday”), to be published by Springer.
  • Xu, J., & Yuan, A. (2024). Frequentist Bayesian compound inference. Statistics and its Interface, 17(1), 9-26.
    [ Link: https://doi.org/10.4310/23-SII797 ]
  • Hu, X., Su, W., Ye, Z., & Zhao, X. (2024). Conditional modeling of panel count data with partly interval-censored failure event. Biometrics, 80(1), Article ujae020.
    [ Link: https://doi.org/10.1093/biomtc/ujae020 ]
  • Yuan, G., Zhao, Y., Kpotufe, S.(2024), Regimes of No Gain in Multi-class Active Learning. Journal of Machine Learning Research, 25(129), 1.
    [ Link: https://www.jmlr.org/papers/v25/23-0234.html ]
  • Barreto-Souza, W., & Chan, N. H. (2023). Nearly unstable integer-valued ARCH process and unit root testing. Scandinavian Journal of Statistics. Advance online publication.
    [ Link: https://doi.org/10.1111/sjos.12689 ]
  • Kiakojouri, A., Lu, Z., Mirring, P., Powrie, H. & Wang, L. (2023). A Novel Hybrid Technique Combining Improved Cepstrum Pre-Whitening and High-Pass Filtering for Effective Bearing Fault Diagnosis Using Vibration Data. Sensors, 23(22), 9048.
    [ Link: https://doi.org/10.3390/s23229048 ]
  • Wei, P., Yuan, K., Ren, X., Yan, C. & Lu, Z. (2023). Time-varying spillover networks of green bond and related financial markets. International Review of Economics & Finance, Volume 88, Pages 298-317.
    [ Link: https://doi.org/10.1016/j.iref.2023.06.022 ]
  • Cai, M., Wang, Z., Xiao, J., Hu, X., Chen, G., & Yang, C. (2023). XMAP: Cross-population fine-mapping by leveraging genetic diversity and accounting for confounding bias. Nature Communications, 14(1),6870.
    [ Link: https://doi.org/10.1038/s41467-023-42614-7 ]
  • Dai, S., & Chan, N. H. (2023). Testing of Constant Parameters for Semi-Parametric Functional Coefficient Models with Integrated Covariates. Journal of Time Series Analysis, 44(5-6), 474-486.
    [ Link: https://doi.org/10.1111/jtsa.12709 ]
  • Loh, W-L. & Sun, S. (2023). Estimating the parameters of some common Gaussian random fields with nugget under fixed-domain asymptotics. Bernoulli. 29(3). 2519 - 2543.
    [ Link: https://doi.org/10.3150/22-bej1551 ]
  • Chan, N. H., Li, Y., & Sit, T. (2023). Excess Mean of Power Estimator of Extreme Value Index. In Y. Liu, J. Hirukawa, & Y. Kakizawa (Eds.), Research Papers in Statistical Inference for Time Series and Related Models: Essays in Honor of Masanobu Taniguchi (pp. 25-82).
    [ Link: https://doi.org/10.1007/978-981-99-0803-5_2 ]
  • Zhang, R., Chan, N. H., & Chi, C. (2023). Nonparametric testing for the specification of spatial trend functions. Journal of Multivariate Analysis, 196, [105180].
    [ Link: https://doi.org/10.1016/j.jmva.2023.105180 ]
  • Zhang, H., Su, W. & Yin, G. (2023). Quasi-Rerandomization for Observational Studies. BMC Medical Research Methodology.
    [ Link: https://doi.org/10.1186/s12874-023-01977-7 ]
  • Chen, K., Chan, N. H., Yau, C. Y., & Hu, J. (2023). Penalized Whittle likelihood for spatial data. Journal of Multivariate Analysis, 195, [105156].
    [ Link: https://doi.org/10.1016/j.jmva.2023.105156 ]
  • Wang, X., Yang, W., Ren, X. & Lu, Z., (2023), Can financial inclusion affect energy poverty in China? Evidence from a spatial econometric analysis. International Review of Economics and Finance, Volume 85, Pages 255-269.
    [ Link: https://doi.org/10.1016/j.iref.2023.01.020 ]
  • Lin, Z., Xue, H., & Pan, W. (2023). Combining Mendelian randomization and network deconvolution for inference of causal networks with GWAS summary data. PLoS Genetics, 19(5), e1010762.
    [ Link: https://doi.org/10.1371/journal.pgen.1010762 ]
  • Wang, T., Tang, W. , Lin, Y. & Su, W. (2023). Semi-supervised inference for nonparametric logistic regression. Statistics in Medicine.
    [ Link: https://doi.org/10.1002/sim.9737 ]
  • Peng, R. & Lu, Z. (2023), Uniform consistency for local fitting of time series non-parametric regression allowing for discrete-valued response. Statistics and Its Interface, Volume 16, 305–318.
    [ Link: SII-2023-0016-0002-a010.pdf (intlpress.com) ]
  • Lin, Z., Xue, H., & Pan, W. (2023). Robust multivariable Mendelian randomization based on constrained maximum likelihood. The American Journal of Human Genetics, 110(4), 592-605.
    [ Link: https://doi.org/10.1016/j.ajhg.2023.02.014 ]
  • Li, C. , Sun, S. & Zhu, Y. (2023). Fixed-domain posterior contraction rates for spatial Gaussian process model with nugget. Journal of the American Statistical Association.
    [ Link: https://doi.org/10.1080/01621459.2023.2191380 ]
  • Xue, H., Shen, X., & Pan, W. (2023). Causal Inference in Transcriptome-Wide Association Studies with Invalid Instruments and GWAS Summary Data. Journal of the American Statistical Association, 118(543), 1525-1537.
    [ Link: https://doi.org/10.1080/01621459.2023.2183127 ]
  • Hao, M. , Lin, Y. , Shen, G. & Su, W. (2023). Nonparametric inference on smoothed quantile regression process. Computational Statistics & Data Analysis. 179. 107645.
    [ Link: https://doi.org/10.1016/j.csda.2022.107645 ]
  • Hu, X., Su, W. & Zhao, X. (2023). Sieve estimation of semiparametric accelerated mean models with panel count data. Electronic Journal of Statistics. 17. 1616 - 1643.
    [ Link: https://doi.org/10.1214/23-EJS2128 ]
  • Huang, X., Xu, J. and Zhou, Y. (2023). Efficient algorithms for survival data with multiple outcomes using the frailty model. Statistical Methods in Medical Research. 2023;32(1):118-132.
    [ Link: https://doi.org/10.1177/09622802221133554 ]
  • Jiao, S., Chan, N. H. & Yau, C. Y. (2023). Enhanced Change Point Detection in Functional Means. Statistica Sinica. (in press).
    [ Link: https://doi.org/10.48550/arXiv.2205.04299 ]
  • Chan, N. H., Gao, L., & Palma, W. (2022). Simultaneous variable selection and structural identification for time-varying coefficient models. Journal of Time Series Analysis, 43(4), 511-531.
    [ Link: https://doi.org/10.1111/jtsa.12626 ]
  • Lu, S., Cheng, L., Lu, Z., Huang, Q. & Khan, B. A., (2022). A Self-Adaptive Grey DBSCAN Clustering Method. In: The Journal of Grey System, 34, 4, 98-109.
    [ Link: jgrey.nuaa.edu.cn/en/abstract/abstract10119.shtml ]
  • Pei, Y., Peng, H., & Xu, J. (2022). A latent class Cox model for heterogeneous time-to-event data. Journal of Econometrics.
    [ Link: https://doi.org/10.1016/j.jeconom.2022.08.009 ]
  • Liu, Li. , Su, Wen. , Yin, Guosheng. , Zhao, Xingqiu. & Zhang, Ying. (2022). Nonparametric inference for reversed mean models with panel count data. Bernoulli. 28. 2968 - 2997.
  • Yang, Y., Wang, C., Liu, L., Buxbaum, J., He, Z., & Ionita-Laza, I. (2022). KnockoffTrio: A knockoff framework for the identification of putative causal variants in genome-wide association studies with trio design. The American Journal of Human Genetics, 109(10), 1761-1776.
    [ Link: https://doi.org/10.1016/j.ajhg.2022.08.013 ]
  • Kiakojouri, A., Lu, Z., Mirring, P., Powrie, H. E. G. & Wang, L. (2022), A generalised machine learning model based on multinomial logistic regression and frequency features for rolling bearing fault classification. Insight, 64, 8, p. 447-452.
  • Wang, X., Li, J., Ren, X. & Lu, Z. (2022), Exploring the bidirectional causality between green markets and economic policy: Evidence from the time-varying Granger test. Environmental Science and Pollution Research, 29, pages 88131–88146.
    [ Link: https://doi.org/10.1007/s11356-022-21685-x ] (The Impact factor is 5.19 in 2024)
  • Xiao, Jiashun , Cai, Mingxuan , Yu, Xinyi , Hu, Xianghong , Chen, Gang , Wan, Xiang & Yang, Can (2022). Leveraging the local genetic structure for trans-ancestry association mapping. The American Journal of Human Genetics. 109(7). 1317 - 1337.
    [ Link: https://doi.org/10.1016/j.ajhg.2022.05.013 ]
  • Huang, H-H., Chan, N. H., Chen, K., & Ing, C-K. (2022). Consistent Order Selection for Arfima Processes. Annals of Statistics, 50(3), 1297-1319.
    [ Link: https://doi.org/10.1214/21-AOS2149 ]
  • Ren, X., Li, Y., Yan, C., Wen, F. & Lu, Z. (2022). The interrelationship between the carbon futures market and the green bonds market: Evidence from wavelet and quantile-on-quantile methods. Technological Forecasting and Social Change, Volume 179, June 2022, 121611.
    [ Link: https://doi.org/10.1016/j.techfore.2022.121611 ] (The Impact Factor is 12 in 2024)
  • Su, Wen. , Yin, Guosheng. , Zhang, Jing. & Zhao, Xingqiu. (2022). Divide-and-conquer for accelerated failure time model with massive time-to-event data. Canadian Journal of Statistics. 51. 400 - 419.
  • Su, Wen. , He, Baihua. , Zhang, Yan Dora. & Yin, Guosheng. (2022). C-index regression for recurrent event data. Contemporary Clinical Trials. 118. 106787
  • Li, Z., Xu, J., Zhou, W., and Zhao, N. (2022). Penalized Jackknife Empirical Likelihood in High Dimensions. Statistica Sinica. In press.
  • Xue, H. and Pan, W. (2022). Robust inference of bi-directional causal relationships in presence of correlated pleiotropy with GWAS summary data. PLoS Genetics, 18(5), e1010205.
    [ Link: https://doi.org/10.1371/journal.pgen.1010205 ]
  • Ren, X., Li, Y., Shahbaz, M., Dong, K. & Lu, Z. (2022) Climate risk and corporate environmental performance: Empirical evidence from China. Sustainable Production and Consumption, 30, 467-477.
    [ Link: https://doi.org/10.1016/j.spc.2021.12.023 ] (The Impact Factor is 10.9 in 2024)
  • Kpotufe, S., Yuan, G., Zhao, Y. (2022). Nuances in margin conditions determine gains in active learning. International Conference on Artificial Intelligence and Statistics, PMLR, 8112– 8126.
    [ Link: https://proceedings.mlr.press/v151/kpotufe22a.html ]
  • Yang, Yi. , Basu, Saonli. & Zhang, Lin. (Feb 2022). A Bayesian hierarchically structured prior for gene-based association test with multiple traits in genome-wide association studies. Genetic epidemiology. 46 (1). 63 - 72. doi:10.1002/gepi.22437
    [ Link: https://onlinelibrary.wiley.com/doi/pdf/10.1002/gepi.22437 ]
  • Xiao, Jiashun, Cai, Mingxuan, Hu, Xianghong, Wan, Xiang, Chen, Gang & Yang, Can (2022). XPXP: Improving polygenic prediction by cross-population and cross-phenotype analysis. Bioinformatics. 38(7). 1947 - 1955.
    [ Link: https://doi.org/10.1093/bioinformatics/btac029 ]
  • Huang, T.-J., Luedtke, A. and McKeague, I. W. (2022)
    Efficient Estimation of the Maximal Association between Multiple Predictors and a Survival Outcome.
    Submitted to the Annals of Statistics [arXiv link]
  • Jiao, S., Frostig, R. & Ombao, H. (2022). Filtrated Common Functional Principal Component Analysis for Multi-group Functional Data. Annals of Applied Statistics. (revised).
    [ Link: https://doi.org/10.48550/arXiv.2205.04299 ]
  • Jiao, S., Frostig, R. & Ombao, H. (2022). Break Point Detection for Functional Covariance. Scandinavia Journal of Statistics. 50/2. 477 - 512.
  • Jiao, S., Frostig, R. & Ombao, H. (2022). Variation Pattern Classification of Functional Data. Canadian Journal of Statistics. (online).
    [ Link: https://doi.org/10.1002/cjs.11738 ]
  • Zhang, R., & Chan, N. H. (2021). Nonstationary linear processes with infinite variance garch errors. Econometric Theory, 37(5), 892-925.
    [ Link: https://doi.org/10.1017/S0266466620000377 ]
  • Chan, N. H., Ng, W. L., Yau, C. Y., & Yu, H. (2021). Optimal change-point estimation in time series. Annals of Statistics, 49(4), 2336-2355.
    [ Link: https://doi.org/10.1214/20-AOS2039 ]
  • Li, Y., Chan, N. H., Yau, C. Y., & Zhang, R. (2021). Group orthogonal greedy algorithm for change-point estimation of multivariate time series. Journal of Statistical Planning and Inference, 212, 14-33.
    [ Link: https://doi.org/10.1016/j.jspi.2020.08.002 ]
  • Loh, W-L. , Sun, S. & Wen, J. (Dec 2021). On fixed-domain asymptotics, parameter estimation and isotropic Gaussian random fields with Matérn covariance functions. Annals of Statistics. 49(6). 3127 - 3152.
    [ Link: https://doi.org/10.1214/21-AOS2077 ]
  • Lee, C., Wong, K., Lam, K., and Xu, J. (2021). Analysis of Clustered Interval-Censored Data using a Class of Semiparametric Partly Linear Frailty Transformation Models. Biometrics. In press.
  • Wang, W., Xu, J., Schwartz, J., Baccarelli, A., and Liu, Z. (2021). Causal mediation analysis with latent subgroups. Statistics in Medicine, 40, 5628-5641.
  • Zhou, Y., Zhang, L., Xu, J., Zhang, J., and Yan, X. (2021). Category encoding method to select feature genes for the classification of bulk and single-cell RNA-seq data. Statistics in Medicine, 40, 4077-4089.
  • Liu, Y., Xu, J., and Li, G. (2021). Sure Joint Feature Screening in Nonparametric Transformation Model with Right Censored Data. Canadian Journal of Statistics, 49, 549-565.
  • Wong, T., Wong, C., Zhang, X., Zhou, Y., Xu, J., Yuen, K., Wan, J., and Louie, J. (2021). The Association Between Coffee Consumption and Metabolic Syndrome in Adults: A Systematic Review and Meta-Analysis. Advances in Nutrition, 12(3):708-721.
  • Tang, C., Yuan, G., Zheng T. (2021), Weakly Supervised Learning Creates a Fusion of Modeling Cultures. Observational Studies, 7(1), 203-211.
    [ Link: https://muse.jhu.edu/article/799736 ]
  • Yang, Yi. , Basu, Saonli. & Zhang, Lin. (Jun 2021). A Bayesian hierarchically structured prior for rare‐variant association testing. Genetic epidemiology. 45 (4). 413 - 424. doi:10.1002/gepi.22379
    [ Link: https://onlinelibrary.wiley.com/doi/pdf/10.1002/gepi.22379 ]
  • Cai, Mingxuan, Xiao, Jiashun, Zhang, Shunkang, Wan, Xiang, Zhao, Hongyu, Chen, Gang & Yang, Can (2021). A unified framework for cross-population trait prediction by leveraging the genetic correlation of polygenic traits. The American Journal of Human Genetics. 108(4). 632 - 655.
    [ Link: https://doi.org/10.1016/j.ajhg.2021.03.002 ]
  • Chan, N. H., Ng, W. L., & Yau, C. Y. (2021). A self-normalized approach to sequential change-point detection for time series. Statistica Sinica, 31(1), 491-517.
    [ Link: https://doi.org/10.5705/ss.202018.0269 ]
  • McKeague, I. W. and Swan, Y. (2021)
    Stein's Method and Approximaing the Multidimensional Quantum Harmonic Oscillator
    [arXiv link]
  • McKeague, I. W.(2021)
    Non-Commutative Probability and Multiplicative Cascades
    Statistical Science, 36, 256-263.[pdf]
  • Chang, H.-W.,McKeague, I. W. and Wang, Y.-J. (2021)
    A Case Study of Non-inferiority Testing with Survival Outcomes
    Case Studies in Business, Industry and Government Statistics, 8, 1-13.[pdf] [Code and data]
  • Jiao, S., Aue, A. & Ombao, H. (2021). Functional Time Series Prediction Under Partial Observation of the Future Curve. Journal of the American Statistical Association. 118/541. 315 - 316.
  • Jiao, S. & Ombao, H. (2021). Shape-preserving Prediction for Stationary Functional Time Series. Electronic Journal of Statistics. 15/2. 3996 - 4026.
  • Xue, H., Shen, X., & Pan, W. (2021). Constrained maximum likelihood-based Mendelian randomization robust to both correlated and uncorrelated pleiotropic effects. The American Journal of Human Genetics, 108(7), 1251-1269.
    [ Link: https://doi.org/10.1016/j.ajhg.2021.05.014 ]
  • Wen, J., Sun, S. & Loh, W-L. (2021). Smoothness estimation of nonstationary Gaussian random fields from irregularly spaced data observed along a curve. Electronic Journal of Statistics. 15(2). 6071 - 6150.
  • Liu, Li. , Su, Wen. & Zhao, Xingqiu. (2021). Bi-selection in the high-dimensional additive hazards regression model. Electronic Journal of Statistics. 15. 748 - 772.
  • Xue, H., & Pan, W. (2020). Inferring causal direction between two traits in the presence of horizontal pleiotropy with GWAS summary data. PLoS Genetics, 16(11), e1009105.
    [ Link: https://doi.org/10.1371/journal.pgen.1009105 ]
  • Chan, N. H., Ling, S., & Yau, C. Y. (2020). LASSO-BASED VARIABLE SELECTION OF ARMA MODELS. Statistica Sinica, 30(4), 1925-1948.
    [ Link: https://doi.org/10.5705/ss.202017.0500 ]
  • Chen, K., Chan, N.H. & Yau, C. Y. (2020) Bartlett correction of frequency domain empirical likelihood for time series with unknown innovation variance. Annals of the Institute of Statistical Mathematics 72 5 1159-1173;
    [ Link: https://doi.org/10.1007/s10463-019-00723-5 ]
  • Yang, W., Lu, Z., Wang, D., Shao, Y. & Shi, J. (2020). Sustainable Evolution of China’s Regional Energy Efficiency Based on a Weighted SBM Model with Energy Substitutability. Sustainability , 12, 10073.
    [ Link: https://doi.org/10.3390/su122310073 ] (IF= 3.889 in Year 2024)
  • Ng, C. T., Shi, Y., & Chan, N. H. (2020). Markowitz portfolio and the blur of history. International Journal of Theoretical and Applied Finance, 23(5), Article 2050030. Advance online publication.
    [ Link: https://doi.org/10.1142/S0219024920500302 ]
  • Sun, Y., Lian, G., Lu, Z., Loveland, J., & Blackhurst, I. (2020). Modeling the variance of return intervals toward volatility prediction. Journal of Time Series Analysis, 41(4), 492-519.
    [ Link: https://doi.org/10.1111/jtsa.12518 ]
  • Muhammad, M. & Lu, Z. (2020). Estimating the UK index flood: an improved spatial flooding analysis. Environmental Modelling and Assessment, 25, 731–748.
    [ Link: https://doi.org/10.1007/s10666-020-09713-x ] (IF= 2.016 in Year 2023-24)
  • Chan, N. H., Cheung, S. K. C., & Wong, S. P. S. (2020). Inference for the degree distributions of preferential attachment networks with zero-degree nodes. Journal of Econometrics, 216(1), 220-234. Advance online publication.
    [ Link: https://doi.org/10.1016/j.jeconom.2020.01.015 ]
  • Jiang, Z., Ling, N., Lu, Z., Tjøstheim, D., & Zhang, Q. (2020). On bandwidth choice for spatial data density estimation. Journal of the Royal Statistical Society. Series B: Methodological, vol. 82(3), pages 817-840.
    [ Link: https://doi.org/10.1111/rssb.12367 ] (IF= 5.8, Year 2023)
  • Lu, Z. & Ren, X. (2020). Statistical Intelligent Modelling: Some Personal Thinking on Artificial Intelligence from the Perspective of Statistics. Chapter 4, Artificial Intelligence and Development of Future Society (Editor-in-Chief: Yike Guo), pages 44-58. Beijing: Scientific and Technical Document Press. [In Chinese] (Organized by Association of British Chinese Professors)
  • Xu, J., Li, W. K., and Ying, Z. (2020). Variable Screening for Survival Data in the Presence of Heterogeneous Censoring. Scandinavian Journal of Statistics, 47, 1171-1191.
  • Xu, J., Yue, M., and Zhang, W. (2020). A New Multilevel Modeling Approach for Clustered Survival Data. Econometric Theory, 36, 707-750.
  • Yuan, M., Xu, S., Yang, Y., Zhou, Y., Li, Y., Xu, J., and Pinheiro, J. (2020)z. SCEBE: an Efficient and Scalable Algorithm for Genome-wide Association Studies on Longitudinal Outcomes with Mixed effects Modeling. Briefings in Bioinformatics, bbaa130.
  • Yuan M., Li Y., Yang Y., Xu J., Tao F., Zhao L., Zhou H., Pinheiro J. and Xu S. (2020). A Novel Quantification of Information for Longitudinal Data Analyzed by Mixed-effects Modeling. Pharmaceutical Statistics, 19, 388-398.
  • Fang, Y. and Xu, J. (2020). Joint Variable Screening in the Censored Accelerated Failure Time Model. Statistica Sinica, 30, 467-485.
  • Ji, K., Tan, J., Xu, J., and Chi, Y. (2020) Learning Latent Features With Pairwise Penalties in Low-Rank Matrix Completion. IEEE Transactions on Signal Processing, 68, 4210-4225.
  • Yang, Yi. , Basu, Saonli. & Zhang, Lin. (Mar 2020). A Bayesian hierarchical variable selection prior for pathway-based GWAS using summary statistics. Statistics in medicine. 39 (6). 724 - 739. doi:10.1002/sim.8442
    [ Link: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.8442 ]
  • Cai, Mingxuan, Chen, Lin S., Liu, Jin & Yang, Can (2020). IGREX for quantifying the impact of genetically regulated expression on phenotypes. NAR Genomics and Bioinformatics. 2(1). lqaa010
    [ Link: https://doi.org/10.1093/nargab/lqaa010 ]
  • Cai, Mingxuan, Dai, Mingwei, Ming, Jingsi, Peng, Heng, Liu, Jin & Yang, Can (2020). BIVAS: a scalable Bayesian method for bi-level variable selection with applications. Journal of Computational and Graphical Statistics. 29(1). 40 - 52.
    [ Link: https://doi.org/10.1080/10618600.2019.1624365 ]
  • McKeague, I. W. and (Henry) Zhang, X. (2020)
    Significance Testing for Canonical Correlation Analysis in High Dimensions
    [arXiv link]
  • Gyllenberg, D., McKeague, I. W., Sourander, A. and Brown, A.S. (2020)
    Robust Data-driven Identification of Risk Factors and their Interactions: A Simulation and a Study of Parental and Demographic Risk Factors for Schizophrenia
    International Journal of Methods in Psychiatric Research, 2020;29:e1834. [pdf]
  • Huang, X., Xu, J. and Tian, G. (2019). On Profile MM Algorithms for Gamma Frailty Survival Models. Statistica Sinica, 29, 895-916.
  • Tian, G., Huang, X. and Xu, J. (2019). An Assembly and Decomposition Approach for Constructing Separable Minorizing Functions in a Class of MM Algorithms. Statistica Sinica, 29, 961-982.
  • McKeague, I. W., Pekoz, E. and Swan, Y. (2019)
    Stein's Method and Approximating the Quantum Harmonic Oscillator
    Bernoulli, 25, 89-111.[pdf]
  • Huang, T.-J., McKeague, I. W. and Qian, M. (2019)
    Marginal Screening for High-Dimensional Predictors of Survival Outcomes
    Statistica Sinica, 29, 2105-2139. [pdf] [supplement]
  • Chang, H.-W. and McKeague, I. W. (2019)
    Nonparametric Testing for Multiple Survival Functions with Non-Inferiority Margins.
    The Annals of Statistics, 47, 205-232.[pdf] [supplement]
  • McKeague, I. W. (2019)
    Introduction to Empirical Likelihood (Lecture Notes)
    First prepared for a Workshop at Université catholique de Louvain, May 2002.[pdf]
  • McKeague, I. W. and Qian, M. (2019)
    Marginal Screening of 2x2 Tables in Large-Scale Case-Control Studies
    Biometrics, 75, 163-171 [pdf] [supplement] [R code]
  • Fang, Y., Xu, J. and Yang, L. (2018). Online Bootstrap Confidence Intervals for the Stochastic Gradient Descent Estimator. Journal of Machine Learning Research, 19,1-21.
  • Yuan, M., Xu, S., Yang, Y., Xu, J., Huang, X., Tao, F., Zhao, L., Zhang, L., and Pinheiro, J. (2018). A Quick and Accurate Method for Estimation of Covariate Effects Based on Empirical Bayes Estimates in Mixed-effects Modeling: Correction of Bias Due to Shrinkage. Statistical Methods in Medical Research, 28, 3568-3578.
  • Wang, C., Shen, Q., Du, L., Xu, J., and Zhang, H. (2018). A Functional Beta Model for Detecting Age-related Genomewide DNA Methylation Marks. Statistical Methods in Medical Research, 27(9): 2627-2640.
  • Zheng, G., Xiong, J., Li, Q., Xu, J., Yuan, A., and Gastwirth, J. (2018). Evaluating the Accuracy of Small P-Values In Genetic Association Studies Using Edgeworth Expansions. Scandinavian Journal of Statistics, 45(1): 1-33.
  • Xu, S., Yuan, M., Zhu, H., Yang, Y., Wang, H., Zhou, H., Xu, J., Zhang, L. and Pinheiro, J. (2018). Full covariate modelling approach in population pharmacokinetics: understanding the underlying hypothesis tests and implications of multiplicity. Br J Clin Pharmacol, 84, 1525-1534.
  • Lala, A., Guo, Y., Xu, J., Esposito, M., Morine, K., Karas, R., Katz, S., Hochman, J., Burkhoff, D., and Kapur, N. (2018). Right Ventricular Dysfunction in Acute Myocardial Infarction Complicated by Cardiogenic Shock: A Hemodynamic Analysis of the SHould we emergently revascularize Occluded coronaries for Cardiogenic shocK (SHOCK) Trial and Registry J Card Fail, 24(3), 148-156
  • Yang, Yi. , Basu, Saonli. , Mirabello, Lisa. , Spector, Logan. & Zhang, Lin. (May 2018). A Bayesian gene-based genome-wide association study analysis of osteosarcoma trio data using a hierarchically structured prior. Cancer Informatics. 17. doi:10.1177/1176935118775103
    [ Link: https://journals.sagepub.com/doi/pdf/10.1177/1176935118775103 ]
  • Wang, H. J., McKeague, I. W. and Qian, M. (2018)
    Testing for Marginal Linear Effects in Quantile Regression
    JRSS-B, 80, 433-452.[pdf] [supplement] [R code] [Help and Example] [HIV-EFV data (csv file)]
  • Hjort, N. L., McKeague, I. W. and Van Keilegom, I. (2018)
    Hybrid Combinations of Parametric and Empirical Likelihoods
    Statistica Sinica (special issue in honor of Peter Hall), 28, 389-2407. [pdf]